Mostrar el registro sencillo del ítem

Artículo

dc.creatorIndiveri, Giacomoes
dc.creatorLinares Barranco, Bernabées
dc.creatorLegenstein, Robertes
dc.creatorDeligeorgis, Georgees
dc.creatorProdromakis, Themistoklises
dc.date.accessioned2018-05-22T12:57:39Z
dc.date.available2018-05-22T12:57:39Z
dc.date.issued2013
dc.identifier.citationIndiveri, G., Linares Barranco, B., Legenstein, R., Deligeorgis, G. y Prodromakis, T. (2013). Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology, 24 (38), 384010-.
dc.identifier.issn0957-4484es
dc.identifier.issn1361-6528es
dc.identifier.urihttps://hdl.handle.net/11441/74945
dc.description.abstractConventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Physics Publishinges
dc.relation.ispartofNanotechnology, 24 (38), 384010-.
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleIntegration of nanoscale memristor synapses in neuromorphic computing architectureses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadoreses
dc.relation.publisherversionhttp://dx.doi.org/10.1088/0957-4484/24/38/384010es
dc.identifier.doi10.1088/0957-4484/24/38/384010es
idus.format.extent22 p.es
dc.journaltitleNanotechnologyes
dc.publication.volumen24es
dc.publication.issue38es
dc.publication.initialPage384010es

FicherosTamañoFormatoVerDescripción
Integration of nanoscale memri ...2.678MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América