Mostrar el registro sencillo del ítem

Artículo

dc.creatorIllescas, Beatriz M.es
dc.creatorRojo, J. M.es
dc.creatorDelgado, Rafaeles
dc.creatorMartín, Nazarioes
dc.date.accessioned2018-05-16T14:37:43Z
dc.date.available2018-05-16T14:37:43Z
dc.date.issued2017
dc.identifier.citationIllescas, B.M., Rojo, J.M., Delgado, R. y Martín, N. (2017). Multivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infection. Journal of the American Chemical Society, 139, 6018-6025.
dc.identifier.issn0002-7863 (impresa)es
dc.identifier.issn1520-5126 (electrónica)es
dc.identifier.urihttps://hdl.handle.net/11441/74708
dc.description.abstractThe infection of humans by lethal pathogens such as Ebola and other related viruses has not been properly addressed so far. In this context, a relevant question arises: What can chemistry do in the search for new strategies and approaches to solve this emergent problem? Although initially a variety of known chemical compounds-for other purposes-proved disappointing in tests against Ebola virus (EBOV) infection, more recently, specific molecules have been prepared. In this Perspective, we present new approaches directed at the design of efficient entry inhibitors to minimize the development of resistance by viral mutations. In particular, we focus on dendrimers as well as fullerene C-with a unique symmetrical and 3D globular structure-as biocompatible carbon platforms for the multivalent presentation of carbohydrates. The antiviral activity of these compounds in an Ebola pseudotyped infection model was in the low micromolar range for fullerenes with 12 and 36 mannoses. However, new tridecafullerenes-in which the central alkyne scaffold of [60]fullerene is connected to 12 sugar-containing [60]fullerene units (total 120 mannoses)-exhibit an outstanding antiviral activity with IC in the sub-nanomolar range! The multivalent presentation of specific carbohydrates by using 3D fullerenes as controlled biocompatible carbon scaffolds represents a real advance, being currently the most efficient molecules in vitro against EBOV infection. However, additional studies are needed to determine the optimized fullerene-based leads for practical applications.es
dc.description.sponsorshipMinisterio de Economía y Competitividad CTQ2014- 52045-R, CTQ2014-52328-Pes
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.relation.ispartofJournal of the American Chemical Society, 139, 6018-6025.
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMultivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infectiones
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Química Orgánicaes
dc.relation.publisherversionhttps://pubs.acs.org/doi/ipdf/10.1021/jacs.7b01683es
dc.identifier.doi10.1021/jacs.7b01683es
idus.format.extent9es
dc.journaltitleJournal of the American Chemical Societyes
dc.publication.issue139es
dc.publication.initialPage6018es
dc.publication.endPage6025es
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). España

FicherosTamañoFormatoVerDescripción
JACS_perspectives_270317.pdf346.2KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América