Mostrar el registro sencillo del ítem

Artículo

dc.creatorDíaz Troya, Sandraes
dc.creatorPérez Pérez, Maria Estheres
dc.creatorPérez Martín, Martaes
dc.creatorMoes, Suzettees
dc.creatorJeno, Paules
dc.creatorFlorencio Bellido, Francisco Javieres
dc.creatorCrespo González, José Luises
dc.date.accessioned2017-12-04T19:06:34Z
dc.date.available2017-12-04T19:06:34Z
dc.date.issued2011
dc.identifier.citationDíaz Troya, S., Pérez Pérez, M.E., Pérez Martín, M., Moes, S., Jeno, P., Florencio Bellido, F.J. y Crespo González, J.L. (2011). Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Plant Physiology, 157, 730-741.
dc.identifier.issn0032-0889 (impreso)es
dc.identifier.urihttp://hdl.handle.net/11441/67230
dc.description.abstractThe target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORC1 and TORC2. Inactivation of TORC1 by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Society of Plant Biologistses
dc.relation.ispartofPlant Physiology, 157, 730-741.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleInhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonases
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Bioquímica Vegetal y Biología Moleculares
dc.relation.publisherversionhttp://dx.doi.org/10.1104/pp.111.179861es
dc.identifier.doi10.1104/pp.111.179861es
idus.format.extent45 p.es
dc.journaltitlePlant Physiologyes
dc.publication.volumen157es
dc.publication.initialPage730es
dc.publication.endPage741es
dc.identifier.sisius20064424es

FicherosTamañoFormatoVerDescripción
Plant Physiology 157, 730-741 ...659.5KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional