##
Improved enumeration of simple topological graphs

Author | Kynčl, Jan |

Editor | Díaz Báñez, José Miguel
Garijo Royo, Delia Márquez Pérez, Alberto Urrutia Galicia, Jorge |

Date | 2013 |

Published in | XV Spanish Meeting on Computational Geometry (2013), p 107-110 |

Document type | Presentation |

Abstract | A simple topological graph T = (V (T ), E(T )) is a drawing of a graph in the plane where every two edges have at most one common point (an endpoint or a crossing) and no three edges pass through a single crossing. Topological ... A simple topological graph T = (V (T ), E(T )) is a drawing of a graph in the plane where every two edges have at most one common point (an endpoint or a crossing) and no three edges pass through a single crossing. Topological graphs G and H are isomorphic if H can be obtained from G by a homeomorphism of the sphere, and weakly isomorphic if G and H have the same set of pairs of crossing edges. We generalize results of Pach and Tóth and the author's previous results on counting different drawings of a graph under both notions of isomorphism. We prove that for every graph G with n vertices, m edges and no isolated vertices the number of weak isomorphism classes of simple topological graphs that realize G is at most 2 O(n2log(m/n)), and at most 2O(mn1/2 log n) if m ≤ n 3/2. As a consequence we obtain a new upper bound 2 O(n3/2 log n) on the number of intersection graphs of n pseudosegments. We improve the upper bound on the number of weak isomorphism classes of simple complete topological graphs with n vertices to 2n2 ·α(n) O(1), using an upper bound on the size of a set of permutations with bounded VC-dimension recently proved by Cibulka and the author. We show that the number of isomorphism classes of simple topological graphs that realize G is at most 2 m2+O(mn) and at least 2 Ω(m2) for graphs with m > (6 + ε)n. |

Files | Size | Format | View | Description |
---|---|---|---|---|

Improved enumeration of simple ... | 660.2Kb | [PDF] | View/ | |