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Abstra
tA simple topologi
al graph T = (V (T ), E(T )) is adrawing of a graph in the plane where every two edgeshave at most one 
ommon point (an endpoint or a
rossing) and no three edges pass through a single
rossing. Topologi
al graphs G and H are isomorphi
if H 
an be obtained from G by a homeomorphism ofthe sphere, and weakly isomorphi
 if G and H havethe same set of pairs of 
rossing edges.We generalize results of Pa
h and Tóth and the au-thor's previous results on 
ounting di�erent drawingsof a graph under both notions of isomorphism. Weprove that for every graph G with n verti
es, m edgesand no isolated verti
es the number of weak isomor-phism 
lasses of simple topologi
al graphs that realize
G is at most 2O(n2 log(m/n)), and at most 2O(mn

1/2 logn)if m ≤ n3/2. As a 
onsequen
e we obtain a new up-per bound 2O(n3/2 log n) on the number of interse
tiongraphs of n pseudosegments. We improve the upperbound on the number of weak isomorphism 
lasses ofsimple 
omplete topologi
al graphs with n verti
es to
2n

2·α(n)O(1) , using an upper bound on the size of a setof permutations with bounded VC-dimension re
entlyproved by Cibulka and the author. We show that thenumber of isomorphism 
lasses of simple topologi
algraphs that realize G is at most 2m
2+O(mn) and atleast 2Ω(m2) for graphs with m > (6 + ε)n.1 Introdu
tion and the resultsA topologi
al graph T = (V (T ), E(T )) is a drawing ofa graph G in the plane with the following properties.The verti
es of G are represented by a set V (T ) of dis-tin
t points in the plane and the edges of G are repre-sented by a set E(T ) of simple 
urves 
onne
ting the
orresponding pairs of points. We 
all the elements of
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V (T ) and E(T ) the verti
es and the edges of T . Thedrawing has to satisfy the following general position
onditions: (1) the edges pass through no verti
es ex-
ept their endpoints, (2) every two edges have only a�nite number of interse
tion points, (3) every interse
-tion point of two edges is either a 
ommon endpointor a proper 
rossing (�tou
hing� of the edges is not al-lowed), and (4) no three edges pass through the same
rossing. A topologi
al graph is simple if every twoedges have at most one 
ommon point, whi
h is eithera 
ommon endpoint or a 
rossing. A topologi
al graphis 
omplete if it is a drawing of a 
omplete graph.We use two di�erent notions of isomorphism to enu-merate topologi
al graphs.Topologi
al graphs G and H are weakly isomorphi
if there exists an in
iden
e preserving one-to-one 
or-responden
e between V (G), E(G) and V (H), E(H)su
h that two edges of G 
ross if and only if the 
or-responding two edges of H do.Note that every topologi
al graph G drawn in theplane indu
es a drawing GS2 on the sphere, whi
h isobtained by a standard one-point 
ompa
ti�
ation ofthe plane. Topologi
al graphs G and H are isomor-phi
 if there exists a homeomorphism of the spherewhi
h transforms GS2 into HS2 . The isomorphism
an be also de�ned in a 
ombinatorial way.Unlike the isomorphism, the weak isomorphism 
an
hange the fa
es of the involved topologi
al graphs,the order of 
rossings along the edges and also the
y
li
 orders of edges around verti
es.For 
ounting the (weak) isomorphism 
lasses, we
onsider all the graphs labeled. That is, ea
h vertex isassigned a unique label from the set {1, 2, . . . , n}, andwe require the (weak) isomorphism to preserve thelabels. Mostly it makes no signi�
ant di�eren
e in theresults as we operate with quantities asymptoti
allylarger than n!.For a graphG, let Tw(G) be the number of weak iso-morphism 
lasses of simple topologi
al graphs that re-alize G. Pa
h and Tóth [13℄ and the author [6℄ provedthe following lower and upper bounds on Tw(Kn).Theorem 1 [6, 13℄ For the number of weak isomor-phism 
lasses of simple drawings of Kn, we have
2Ω(n2)

≤ Tw(Kn) ≤ ((n− 2)!)n = 2O(n2 logn).
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Improved enumeration of simple topologi
al graphsWe prove generalized upper and lower bounds on
Tw(G) for all graphs G.Theorem 2 Let G be a graph with n verti
es and medges. Then

Tw(G) ≤ 2O(n2 log(m/n)).If m < n3/2, then
Tw(G) ≤ 2O(mn

1/2 logn).Let ε > 0. If G is a graph with no isolated verti
esand at least one of the 
onditions m > (1 + ε)n or
∆(G) < (1− ε)n is satis�ed, then

Tw(G) ≥ 2Ω(max(m,n logn)).We also improve the upper bound from Theorem 1.Theorem 3 We have
Tw(Kn) ≤ 2n

2·α(n)O(1)

.Here α(n) is the inverse of the A
kermann fun
tion.It is an extremely slowly growing fun
tion, whi
h 
anbe de�ned in the following way [10℄. α(m) := min{k :
αk(m) ≤ 3} where αd(m) is the dth fun
tion in the in-verse A
kermann hierar
hy. That is, α1(m) = ⌈m/2⌉,
αd(1) = 0 for d ≥ 2 and αd(m) = 1+αd(αd−1(m)) for
m, d ≥ 2. The 
onstant in the O(1) notation in the ex-ponent is huge (roughly 430

4), due to a Ramsey-typeargument used in the proof.In the proof of Theorem 3 we use the fa
t thatfor simple 
omplete topologi
al graphs, the weak iso-morphism 
lass is determined by the rotation sys-tem [7, 13℄. This is 
ombined with a Ramsey-typetheorem by Pa
h, Solymosi and Tóth [12℄, whi
h saysthat a simple 
omplete topologi
al graph with su�-
iently many verti
es 
ontains a subgraph weakly iso-morphi
 to a 
onvex graph or a twisted graph of givensize; see Figure 1. On
e we have a 
onvex graph with
5 verti
es or a twisted graph with 6 verti
es, we mayrestri
t the set of possible rotations of other verti
esin terms of forbidden subpermutations. The last mainingredient is a re
ent 
ombinatorial result, a slightlysuperexponential upper bound on the size of a set ofpermutations with bounded VC-dimension obtainedtogether with Josef Cibulka [4℄.The method in the proof of Theorem 2 is more topo-logi
al, gives a slightly weaker upper bound, but 
anbe generalized to all graphs. Here the main tool isa 
onstru
tion of a topologi
al spanning tree T of G,whi
h is a simply 
onne
ted subset of the single topo-logi
al 
omponent of G 
ontaining all verti
es of Gand satisfying the property that the only nonseparat-ing points of T are the verti
es of G. We �nd su
ha tree 
onsisting of O(n) 
onne
ted portions of edges

C5

v1 v2 v3 v4 v5 v6

T6Figure 1: The 
onvex graph C5 and the twisted graph
T6.
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v6Figure 2: A topologi
al spanning tree T of a simpletopologi
al graph with two 
omponents (left) and the
orresponding T -representation (right).of G. By 
utting the plane along T , we obtain the
T -representation of G, whi
h is equivalent to a dis
with at most 2mn 
hords, ea
h 
hord 
orrespondingto a portion of some edge of G. See Figure 2. Wegive an upper bound on the number of inequivalent
T -representations, exploiting the fa
t that many por-tions of edges do not 
ross.We further generalize Theorem 3 by removing al-most all topologi
al aspe
ts of the proof. The re-sulting theorem is a purely 
ombinatorial statement,involving n-tuples of 
y
li
 permutations avoiding a
ertain simple substru
ture.We also 
onsider the 
lass of simple 
omplete topo-logi
al graphs with maximum number of 
rossings andsuggest an alternative method for obtaining an upperbound on the number of weak isomorphism 
lasses ofsu
h drawings.An arrangement of pseudosegments (or also 1-strings) is a set of simple 
urves in the plane su
h thatany two of the 
urves 
ross at most on
e. An inter-se
tion graph of pseudosegments (also 
alled a stringgraph of rank 1) is a graph G su
h that there exists anarrangement of pseudosegments with one pseudoseg-ment for ea
h vertex of G and a pair of pseudoseg-ments 
rossing if and only if the 
orresponding pairof verti
es forms an edge in G. Using tools from ex-tremal graph theory, Pa
h and Tóth [13℄ proved thatthe number of interse
tion graphs of n pseudoseg-ments is 2o(n

2). As a spe
ial 
ase of Theorem 2 we
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XV Spanish Meeting on Computational Geometry, June 26-28, 2013obtain the following upper bound.Theorem 4 There are at most 2O(n3/2 logn) interse
-tion graphs of n pseudosegments.The best known lower bound for the number of (un-labeled) interse
tion graphs of n pseudosegments is
2Ω(n logn). This follows by a simple 
onstru
tion orfrom the the fa
t that there are 2Θ(n logn) nonisomor-phi
 permutation graphs with n verti
es.Let T (G) be the number of isomorphism 
lasses ofsimple topologi
al graphs that realize G. The follow-ing theorem generalizes the result T (Kn) = 2Θ(n4)from [7℄.Theorem 5 Let G be a graph with n verti
es, medges and no isolated verti
es. Then T (G) ≤

2m
2+O(mn). More pre
isely,
T (G) ≤

(
6mn

2mn

)(
m2 + 6mn
m2

2 + 2mn

)

· 2O(n log n)

≤ 2m
2+2mn(1+3 log2 3)+O(n logn), and

T (G) ≤ 2m
2+4mn

·

(
2mn+ m

2

2

2mn

)

· 2O(n logn)

≤ 2m
2+2mn(log(1+ m

4n )+2+log2 e)+O(n logn).Let ε > 0. For graphs G with m > (6 + ε)n we have
T (G) ≥ 2Ω(m2).For graphs G with m > ω(n) we have

T (G) ≥ 2m
2
/60

− o(1).The two upper bounds on T (G) 
ome from two es-sentially di�erent approa
hes to enumerating isomor-phism 
lasses of T -representations. In the �rst ap-proa
h, we redu
e the problem to enumerating sim-ple quadrangulations of the dis
 [9℄. In the se
ondapproa
h, we split the problem into two parts: enu-merating 
hord diagrams [14℄ and enumerating iso-morphism 
lasses of arrangements of pseudo
hords.The �rst method gives better asymptoti
 results fordense graphs, whereas the se
ond one is better forsparse graphs (roughly, with at most 35n edges). Forgraphs with m = O(n) the se
ond term in the expo-nent be
omes more signi�
ant. Sin
e m ≥ n/2, theexponent in the �rst upper bound 
an be bounded by
23.118m2 + o(1), using the entropy bound for the bi-nomial 
oe�
ient. Similarly, the exponent in the se
-ond upper bound 
an be bounded by 11.265m2+o(1).For su
h very sparse graphs (for example, mat
hings),however, better upper bounds 
an be dedu
ed moredire
tly from other known results.The upper bound T (G) ≤ 2O(m2) is trivially ob-tained from the upper bound on the number of unla-beled plane graphs (or planar maps). Indeed, every

drawing G of G 
an be transformed into a plane graph
H by subdividing the edges of G by its 
rossings andregarding the 
rossings of G as new 4-valent verti
esin H . The graph H has thus at most n +

(
m

2

) ver-ti
es, at most m+2
(
m

2

)
= m2 edges, no loops and nomultiple edges. Tutte [17℄ showed that there are

2(2M)!3M

M !(M + 2)!
= 2(log2(12)+o(1))Mrooted 
onne
ted planar maps with M edges (seealso [2, 3, 5℄). Walsh and Lehman [18℄ showed thatthe number of rooted 
onne
ted planar loopless mapswith M edges is

6(4M + 1)!

M !(3M + 3)!
= 2(log2(256/27)+o(1))M .This implies the upper bound T (G) ≤

2(log2(256/27)+o(1))m2 . Somewhat better estimates
ould be obtained by redu
ing the problem to 
ount-ing 4-regular planar maps [15, 16℄, sin
e typi
allyalmost all verti
es in H are the 4-valent verti
es ob-tained from the 
rossings of G. But su
h a redu
tionwould be less straightforward and the resulting upperbound 2(
1
2 log2(196/27)+o(1))m2 still relatively high fordense graphs (for graphs with more than 27n edgesthe two upper bounds from Theorem 5 are better).The proof in [7℄ implies the upper bound T (Kn) ≤

2(1/12+o(1))(n4), although it is not expli
itly statedthere. However, the key Proposition 7 in [7℄ is in-
orre
t. We prove a 
orre
t version in the full paper.Note that by the redu
tion to 
ounting planarmaps, for every �xed 
onstant k, we also obtain theupper bound 2O(km2) on the number of isomorphism
lasses of 
onne
ted topologi
al graphs with m edgeswhere all pairs of edges are allowed to 
ross k times.2 A few open problemsThe problem of 
ounting the asymptoti
 number of�nonequivalent� simple drawings of a graph in theplane is answered only partially. Many open ques-tions remain.The gap between the lower and upper bounds on
Tw(G) proved in Theorem 2 is wide open, espe
iallyfor graphs with low density. For graphs with cn2edges, the lower and upper bounds on logTw(G) dif-fer by a logarithmi
 fa
tor. We 
onje
ture that the
orre
t answer is 
loser to the lower bound.We do not even know whether Tw(G) is a monotonefun
tion with respe
t to the subgraph relation, sin
ethere are simple topologi
al graphs that 
annot be ex-tended to simple 
omplete topologi
al graphs. Due tosomewhat �rigid� properties of simple 
omplete topo-logi
al graphs, we have a mu
h better upper boundfor the 
omplete graph than, say, for the 
ompletebipartite graph on the same number of verti
es.
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Improved enumeration of simple topologi
al graphsProblem 1 Does the 
omplete graph Kn maximizethe value Tw(G) among the graphs G with n verti
es?More generally, is it true that Tw(H) ≤ Tw(G) if H ⊆

G?Our methods for proving upper bounds on the num-ber of weak isomorphism 
lasses of simple topologi
algraphs do not generalize to the 
ase of topologi
algraphs with two 
rossings per pair of edges allowed.Problem 2 What is the number of weak isomor-phism 
lasses of drawings of a graph G where everytwo independent edges are allowed to 
ross at mosttwi
e and every two adja
ent edges at most on
e?For the 
omplete graph with n verti
es, Pa
h andTóth [13℄ proved the lower bound 2Ω(n2 logn) and theupper bound 2o(n
4).A nontrivial lower bound 
an be proved also in the
ase when G is a mat
hing. A
kerman et al. [1℄ 
on-stru
ted a system of n x-monotone 
urves where ev-ery pair of 
urves interse
t in at most one point wherethey either 
ross or tou
h, with Ω(n4/3) pairs of tou
h-ing 
urves. Eyal A
kerman (personal 
ommuni
ation)noted that this also follows from an earlier result byPa
h and Sharir [11℄, who 
onstru
ted an arrange-ment of n segments with Ω(n4/3) verti
ally visiblepairs of disjoint segments. By 
hanging the drawing inthe neighborhood of every tou
hing point, we obtain

2Ω(n4/3) di�erent interse
tion graphs of 2-interse
ting
urves, also 
alled string graphs of rank 2 [13℄. Thisimproves the trivial lower bound observed by Pa
hand Tóth [13℄.A
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