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Abstract

A simple topological graph T = (V(T),E(T)) is a
drawing of a graph in the plane where every two edges
have at most one common point (an endpoint or a
crossing) and no three edges pass through a single
crossing. Topological graphs G and H are isomorphic
if H can be obtained from G by a homeomorphism of
the sphere, and weakly isomorphic if G and H have
the same set of pairs of crossing edges.

We generalize results of Pach and To6th and the au-
thor’s previous results on counting different drawings
of a graph under both notions of isomorphism. We
prove that for every graph G with n vertices, m edges
and no isolated vertices the number of weak isomor-
phism classes of simple topological graphs that realize
G is at most 20" log(m/n)) “and at most 90(mn'/*logn)
if m < n3/2. As a consequence we obtain a new up-
per bound 90(n*/*logn) o the number of intersection
graphs of n pseudosegments. We improve the upper
bound on the number of weak isomorphism classes of
simple complete topological graphs with n vertices to
2”2'”‘(”)0(1), using an upper bound on the size of a set
of permutations with bounded VC-dimension recently
proved by Cibulka and the author. We show that the
number of isomorphism classes of simple topological
graphs that realize G is at most 9m*+0(mn) and at
least 22(m%) for graphs with m > (6 + &)n.

1 Introduction and the results

A topological graph T = (V(T'), E(T)) is a drawing of
a graph G in the plane with the following properties.
The vertices of G are represented by a set V(T') of dis-
tinct points in the plane and the edges of GG are repre-
sented by a set E(T) of simple curves connecting the
corresponding pairs of points. We call the elements of
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V(T) and E(T) the vertices and the edges of T. The
drawing has to satisfy the following general position
conditions: (1) the edges pass through no vertices ex-
cept their endpoints, (2) every two edges have only a
finite number of intersection points, (3) every intersec-
tion point of two edges is either a common endpoint
or a proper crossing (“touching” of the edges is not al-
lowed), and (4) no three edges pass through the same
crossing. A topological graph is simple if every two
edges have at most one common point, which is either
a common endpoint or a crossing. A topological graph
is complete if it is a drawing of a complete graph.

We use two different notions of isomorphism to enu-
merate topological graphs.

Topological graphs G and H are weakly isomorphic
if there exists an incidence preserving one-to-one cor-
respondence between V(G),E(G) and V(H),E(H)
such that two edges of G cross if and only if the cor-
responding two edges of H do.

Note that every topological graph G drawn in the
plane induces a drawing Gg2 on the sphere, which is
obtained by a standard one-point compactification of
the plane. Topological graphs G and H are isomor-
phic if there exists a homeomorphism of the sphere
which transforms Gg2 into Hg2. The isomorphism
can be also defined in a combinatorial way.

Unlike the isomorphism, the weak isomorphism can
change the faces of the involved topological graphs,
the order of crossings along the edges and also the
cyclic orders of edges around vertices.

For counting the (weak) isomorphism classes, we
consider all the graphs labeled. That is, each vertex is
assigned a unique label from the set {1,2,...,n}, and
we require the (weak) isomorphism to preserve the
labels. Mostly it makes no significant difference in the
results as we operate with quantities asymptotically
larger than n!.

For a graph G, let Ty, (G) be the number of weak iso-
morphism classes of simple topological graphs that re-
alize G. Pach and To6th [I3] and the author [6] proved
the following lower and upper bounds on Ty (K,,).

Theorem 1 [6, [13] For the number of weak isomor-
phism classes of simple drawings of K,,, we have

2207 < Ty (K,) < ((n— 2)1)" = 2007 losm),
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We prove generalized upper and lower bounds on
Tw(G) for all graphs G.

Theorem 2 Let G be a graph with n vertices and m
edges. Then

Tw(G) < 90(n”log(m/n))
If m < n3/2, then
T,u(G) < 20(mn' " logn),

Let ¢ > 0. If G is a graph with no isolated vertices
and at least one of the conditions m > (1 + &)n or
A(G) < (1 —e)n is satisfied, then

TW(G) > 2(2(max(m,n logn)) )
We also improve the upper bound from Theorem [

Theorem 3 We have

n)OM

T (K,) < 27

Here a(n) is the inverse of the Ackermann function.
It is an extremely slowly growing function, which can
be defined in the following way [10]. a(m) := min{k :
ag(m) < 3} where ag(m) is the dth function in the in-
verse Ackermann hierarchy. That is, aq(m) = [m/2],
aq(1) =0for d > 2 and ag(m) = 14+ ag(ag—1(m)) for
m,d > 2. The constant in the O(1) notation in the ex-
ponent is huge (roughly 43°"), due to a Ramsey-type
argument used in the proof.

In the proof of Theorem [B] we use the fact that
for simple complete topological graphs, the weak iso-
morphism class is determined by the rotation sys-
tem [7, [I3]. This is combined with a Ramsey-type
theorem by Pach, Solymosi and Téth [12], which says
that a simple complete topological graph with suffi-
ciently many vertices contains a subgraph weakly iso-
morphic to a convez graph or a twisted graph of given
size; see Figure[ll Once we have a convex graph with
5 vertices or a twisted graph with 6 vertices, we may
restrict the set of possible rotations of other vertices
in terms of forbidden subpermutations. The last main
ingredient is a recent combinatorial result, a slightly
superexponential upper bound on the size of a set of
permutations with bounded VC-dimension obtained
together with Josef Cibulka [4].

The method in the proof of Theorem[2is more topo-
logical, gives a slightly weaker upper bound, but can
be generalized to all graphs. Here the main tool is
a construction of a topological spanning tree T of G,
which is a simply connected subset of the single topo-
logical component of G containing all vertices of G
and satisfying the property that the only nonseparat-
ing points of T are the vertices of G. We find such
a tree consisting of O(n) connected portions of edges
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Figure 1: The convex graph C5 and the twisted graph
Ts.
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Figure 2: A topological spanning tree 7 of a simple
topological graph with two components (left) and the
corresponding 7 -representation (right).

of G. By cutting the plane along 7, we obtain the
T -representation of GG, which is equivalent to a disc
with at most 2mn chords, each chord corresponding
to a portion of some edge of G. See Figure 2 We
give an upper bound on the number of inequivalent
T-representations, exploiting the fact that many por-
tions of edges do not cross.

We further generalize Theorem [3] by removing al-
most all topological aspects of the proof. The re-
sulting theorem is a purely combinatorial statement,
involving n-tuples of cyclic permutations avoiding a
certain simple substructure.

We also consider the class of simple complete topo-
logical graphs with maximum number of crossings and
suggest an alternative method for obtaining an upper
bound on the number of weak isomorphism classes of
such drawings.

An arrangement of pseudosegments (or also 1-
strings) is a set of simple curves in the plane such that
any two of the curves cross at most once. An inter-
section graph of pseudosegments (also called a string
graph of rank 1) is a graph G such that there exists an
arrangement of pseudosegments with one pseudoseg-
ment for each vertex of G and a pair of pseudoseg-
ments crossing if and only if the corresponding pair
of vertices forms an edge in G. Using tools from ex-
tremal graph theory, Pach and Téth [13] proved that
the number of intersection graphs of n pseudoseg-
ments is 2°("*). As a special case of Theorem [2] we
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obtain the following upper bound.

Theorem 4 There are at most 207"/ *1087) intersec-
tion graphs of n pseudosegments.

The best known lower bound for the number of (un-
labeled) intersection graphs of n pseudosegments is
2f2(nlogn)  Thig follows by a simple construction or
from the the fact that there are 29("198™) pnonisomor-
phic permutation graphs with n vertices.

Let T'(G) be the number of isomorphism classes of
simple topological graphs that realize G. The follow-
ing theorem generalizes the result T'(K,,) = 20(n*)
from [7].

Theorem 5 Let G be a graph with n wvertices, m
edges and no isolated wvertices.  Then T(G) <
9m*+0(mn)  More precisely,

2
T(G) < (6mn) (m + 6mn) . 9O(nlogn)

2mn mTZ + 2mn

< 2m2+2mn(1+3 log, 3)+0O(nlogn) , and

m2
T(G) < 2m2+4mn . 2mn + 2 ). 2O(n log n)
- 2mn

< gm?+2mn(log(1+ 1% )+2-+logy €)+0(nlogn)
Let € > 0. For graphs G with m > (6 4+ ¢)n we have
T(G) > 22",
For graphs G with m > w(n) we have
T(G) > 2160 _ o(1).

The two upper bounds on T(G) come from two es-
sentially different approaches to enumerating isomor-
phism classes of 7 -representations. In the first ap-
proach, we reduce the problem to enumerating sim-
ple quadrangulations of the disc [9]. In the second
approach, we split the problem into two parts: enu-
merating chord diagrams [14] and enumerating iso-
morphism classes of arrangements of pseudochords.
The first method gives better asymptotic results for
dense graphs, whereas the second one is better for
sparse graphs (roughly, with at most 35n edges). For
graphs with m = O(n) the second term in the expo-
nent becomes more significant. Since m > n/2, the
exponent in the first upper bound can be bounded by
23.118m?2 + o(1), using the entropy bound for the bi-
nomial coefficient. Similarly, the exponent in the sec-
ond upper bound can be bounded by 11.265m2+o(1).
For such very sparse graphs (for example, matchings),
however, better upper bounds can be deduced more
directly from other known results.

The upper bound T(G) < 20(m*) ig trivially ob-
tained from the upper bound on the number of unla-
beled plane graphs (or planar maps). Indeed, every
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drawing G of G can be transformed into a plane graph
H by subdividing the edges of G by its crossings and
regarding the crossings of G as new 4-valent vertices
in H. The graph H has thus at most n + (7)) ver-
tices, at most m + 2("y) = m? edges, no loops and no
multiple edges. Tutte [17] showed that there are

22M)'3Y _10g,(12)+o(1)) M1
MI(M 1 2)!

rooted connected planar maps with M edges (see
also [2, [3, 5]). Walsh and Lehman [I8] showed that
the number of rooted connected planar loopless maps
with M edges is

6(4M +1)! _ o(logy(256/27)+0(1)) M
MI(3M + 3)!

This implies the upper bound T(G) <
9(log5(256/27)+0(1))m*  Gomewhat better estimates
could be obtained by reducing the problem to count-
ing 4-regular planar maps [I5, [16], since typically
almost all vertices in H are the 4-valent vertices ob-
tained from the crossings of G. But such a reduction
would be less straightforward and the resulting upper
bound 2(3 1082(196/27)+o(1))m* gtil] relatively high for
dense graphs (for graphs with more than 27n edges
the two upper bounds from Theorem [ are better).
The proof in [7] implies the upper bound T'(K,,) <
2(1/1240(1)(n") ' although it is not explicitly stated
there. However, the key Proposition 7 in [7] is in-
correct. We prove a correct version in the full paper.
Note that by the reduction to counting planar
maps, for every fixed constant k, we also obtain the
upper bound 20(km*) on the number of isomorphism
classes of connected topological graphs with m edges
where all pairs of edges are allowed to cross k times.

2 A few open problems

The problem of counting the asymptotic number of
“nonequivalent” simple drawings of a graph in the
plane is answered only partially. Many open ques-
tions remain.

The gap between the lower and upper bounds on
Tw(G) proved in Theorem [ is wide open, especially
for graphs with low density. For graphs with cn?
edges, the lower and upper bounds on log T+, (G) dif-
fer by a logarithmic factor. We conjecture that the
correct answer is closer to the lower bound.

We do not even know whether Ty, (G) is a monotone
function with respect to the subgraph relation, since
there are simple topological graphs that cannot be ex-
tended to simple complete topological graphs. Due to
somewhat “rigid” properties of simple complete topo-
logical graphs, we have a much better upper bound
for the complete graph than, say, for the complete
bipartite graph on the same number of vertices.
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Problem 1 Does the complete graph K, mazimize
the value T,,(G) among the graphs G with n vertices?
More generally, is it true that T,,(H) < Ty (G) if H C
G?

Our methods for proving upper bounds on the num-
ber of weak isomorphism classes of simple topological
graphs do not generalize to the case of topological
graphs with two crossings per pair of edges allowed.

Problem 2 What is the number of weak isomor-
phism classes of drawings of a graph G where every
two independent edges are allowed to cross at most
twice and every two adjacent edges at most once?

For the complete graph with n vertices, Pach and
Té6th [13] proved the lower bound 22" 1°m) and the
upper bound 90(n™)

A nontrivial lower bound can be proved also in the
case when G is a matching. Ackerman et al. [I] con-
structed a system of n xz-monotone curves where ev-
ery pair of curves intersect in at most one point where
they either cross or touch, with Q(n*/3) pairs of touch-
ing curves. Eyal Ackerman (personal communication)
noted that this also follows from an earlier result by
Pach and Sharir [II], who constructed an arrange-
ment of n segments with Q(n*/3) vertically visible
pairs of disjoint segments. By changing the drawing in
the neighborhood of every touching point, we obtain
22n"’*) different intersection graphs of 2-intersecting
curves, also called string graphs of rank 2 [13]. This
improves the trivial lower bound observed by Pach
and Toth [13].
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