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AbstratA simple topologial graph T = (V (T ), E(T )) is adrawing of a graph in the plane where every two edgeshave at most one ommon point (an endpoint or arossing) and no three edges pass through a singlerossing. Topologial graphs G and H are isomorphiif H an be obtained from G by a homeomorphism ofthe sphere, and weakly isomorphi if G and H havethe same set of pairs of rossing edges.We generalize results of Pah and Tóth and the au-thor's previous results on ounting di�erent drawingsof a graph under both notions of isomorphism. Weprove that for every graph G with n verties, m edgesand no isolated verties the number of weak isomor-phism lasses of simple topologial graphs that realize
G is at most 2O(n2 log(m/n)), and at most 2O(mn

1/2 logn)if m ≤ n3/2. As a onsequene we obtain a new up-per bound 2O(n3/2 log n) on the number of intersetiongraphs of n pseudosegments. We improve the upperbound on the number of weak isomorphism lasses ofsimple omplete topologial graphs with n verties to
2n

2·α(n)O(1) , using an upper bound on the size of a setof permutations with bounded VC-dimension reentlyproved by Cibulka and the author. We show that thenumber of isomorphism lasses of simple topologialgraphs that realize G is at most 2m
2+O(mn) and atleast 2Ω(m2) for graphs with m > (6 + ε)n.1 Introdution and the resultsA topologial graph T = (V (T ), E(T )) is a drawing ofa graph G in the plane with the following properties.The verties of G are represented by a set V (T ) of dis-tint points in the plane and the edges of G are repre-sented by a set E(T ) of simple urves onneting theorresponding pairs of points. We all the elements of
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V (T ) and E(T ) the verties and the edges of T . Thedrawing has to satisfy the following general positiononditions: (1) the edges pass through no verties ex-ept their endpoints, (2) every two edges have only a�nite number of intersetion points, (3) every interse-tion point of two edges is either a ommon endpointor a proper rossing (�touhing� of the edges is not al-lowed), and (4) no three edges pass through the samerossing. A topologial graph is simple if every twoedges have at most one ommon point, whih is eithera ommon endpoint or a rossing. A topologial graphis omplete if it is a drawing of a omplete graph.We use two di�erent notions of isomorphism to enu-merate topologial graphs.Topologial graphs G and H are weakly isomorphiif there exists an inidene preserving one-to-one or-respondene between V (G), E(G) and V (H), E(H)suh that two edges of G ross if and only if the or-responding two edges of H do.Note that every topologial graph G drawn in theplane indues a drawing GS2 on the sphere, whih isobtained by a standard one-point ompati�ation ofthe plane. Topologial graphs G and H are isomor-phi if there exists a homeomorphism of the spherewhih transforms GS2 into HS2 . The isomorphisman be also de�ned in a ombinatorial way.Unlike the isomorphism, the weak isomorphism anhange the faes of the involved topologial graphs,the order of rossings along the edges and also theyli orders of edges around verties.For ounting the (weak) isomorphism lasses, weonsider all the graphs labeled. That is, eah vertex isassigned a unique label from the set {1, 2, . . . , n}, andwe require the (weak) isomorphism to preserve thelabels. Mostly it makes no signi�ant di�erene in theresults as we operate with quantities asymptotiallylarger than n!.For a graphG, let Tw(G) be the number of weak iso-morphism lasses of simple topologial graphs that re-alize G. Pah and Tóth [13℄ and the author [6℄ provedthe following lower and upper bounds on Tw(Kn).Theorem 1 [6, 13℄ For the number of weak isomor-phism lasses of simple drawings of Kn, we have
2Ω(n2)

≤ Tw(Kn) ≤ ((n− 2)!)n = 2O(n2 logn).
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Improved enumeration of simple topologial graphsWe prove generalized upper and lower bounds on
Tw(G) for all graphs G.Theorem 2 Let G be a graph with n verties and medges. Then

Tw(G) ≤ 2O(n2 log(m/n)).If m < n3/2, then
Tw(G) ≤ 2O(mn

1/2 logn).Let ε > 0. If G is a graph with no isolated vertiesand at least one of the onditions m > (1 + ε)n or
∆(G) < (1− ε)n is satis�ed, then

Tw(G) ≥ 2Ω(max(m,n logn)).We also improve the upper bound from Theorem 1.Theorem 3 We have
Tw(Kn) ≤ 2n

2·α(n)O(1)

.Here α(n) is the inverse of the Akermann funtion.It is an extremely slowly growing funtion, whih anbe de�ned in the following way [10℄. α(m) := min{k :
αk(m) ≤ 3} where αd(m) is the dth funtion in the in-verse Akermann hierarhy. That is, α1(m) = ⌈m/2⌉,
αd(1) = 0 for d ≥ 2 and αd(m) = 1+αd(αd−1(m)) for
m, d ≥ 2. The onstant in the O(1) notation in the ex-ponent is huge (roughly 430

4), due to a Ramsey-typeargument used in the proof.In the proof of Theorem 3 we use the fat thatfor simple omplete topologial graphs, the weak iso-morphism lass is determined by the rotation sys-tem [7, 13℄. This is ombined with a Ramsey-typetheorem by Pah, Solymosi and Tóth [12℄, whih saysthat a simple omplete topologial graph with su�-iently many verties ontains a subgraph weakly iso-morphi to a onvex graph or a twisted graph of givensize; see Figure 1. One we have a onvex graph with
5 verties or a twisted graph with 6 verties, we mayrestrit the set of possible rotations of other vertiesin terms of forbidden subpermutations. The last mainingredient is a reent ombinatorial result, a slightlysuperexponential upper bound on the size of a set ofpermutations with bounded VC-dimension obtainedtogether with Josef Cibulka [4℄.The method in the proof of Theorem 2 is more topo-logial, gives a slightly weaker upper bound, but anbe generalized to all graphs. Here the main tool isa onstrution of a topologial spanning tree T of G,whih is a simply onneted subset of the single topo-logial omponent of G ontaining all verties of Gand satisfying the property that the only nonseparat-ing points of T are the verties of G. We �nd suha tree onsisting of O(n) onneted portions of edges
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T6Figure 1: The onvex graph C5 and the twisted graph
T6.
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v6Figure 2: A topologial spanning tree T of a simpletopologial graph with two omponents (left) and theorresponding T -representation (right).of G. By utting the plane along T , we obtain the
T -representation of G, whih is equivalent to a diswith at most 2mn hords, eah hord orrespondingto a portion of some edge of G. See Figure 2. Wegive an upper bound on the number of inequivalent
T -representations, exploiting the fat that many por-tions of edges do not ross.We further generalize Theorem 3 by removing al-most all topologial aspets of the proof. The re-sulting theorem is a purely ombinatorial statement,involving n-tuples of yli permutations avoiding aertain simple substruture.We also onsider the lass of simple omplete topo-logial graphs with maximum number of rossings andsuggest an alternative method for obtaining an upperbound on the number of weak isomorphism lasses ofsuh drawings.An arrangement of pseudosegments (or also 1-strings) is a set of simple urves in the plane suh thatany two of the urves ross at most one. An inter-setion graph of pseudosegments (also alled a stringgraph of rank 1) is a graph G suh that there exists anarrangement of pseudosegments with one pseudoseg-ment for eah vertex of G and a pair of pseudoseg-ments rossing if and only if the orresponding pairof verties forms an edge in G. Using tools from ex-tremal graph theory, Pah and Tóth [13℄ proved thatthe number of intersetion graphs of n pseudoseg-ments is 2o(n

2). As a speial ase of Theorem 2 we
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XV Spanish Meeting on Computational Geometry, June 26-28, 2013obtain the following upper bound.Theorem 4 There are at most 2O(n3/2 logn) interse-tion graphs of n pseudosegments.The best known lower bound for the number of (un-labeled) intersetion graphs of n pseudosegments is
2Ω(n logn). This follows by a simple onstrution orfrom the the fat that there are 2Θ(n logn) nonisomor-phi permutation graphs with n verties.Let T (G) be the number of isomorphism lasses ofsimple topologial graphs that realize G. The follow-ing theorem generalizes the result T (Kn) = 2Θ(n4)from [7℄.Theorem 5 Let G be a graph with n verties, medges and no isolated verties. Then T (G) ≤

2m
2+O(mn). More preisely,
T (G) ≤

(
6mn

2mn

)(
m2 + 6mn
m2

2 + 2mn

)

· 2O(n log n)

≤ 2m
2+2mn(1+3 log2 3)+O(n logn), and

T (G) ≤ 2m
2+4mn

·

(
2mn+ m

2

2

2mn

)

· 2O(n logn)

≤ 2m
2+2mn(log(1+ m

4n )+2+log2 e)+O(n logn).Let ε > 0. For graphs G with m > (6 + ε)n we have
T (G) ≥ 2Ω(m2).For graphs G with m > ω(n) we have

T (G) ≥ 2m
2
/60

− o(1).The two upper bounds on T (G) ome from two es-sentially di�erent approahes to enumerating isomor-phism lasses of T -representations. In the �rst ap-proah, we redue the problem to enumerating sim-ple quadrangulations of the dis [9℄. In the seondapproah, we split the problem into two parts: enu-merating hord diagrams [14℄ and enumerating iso-morphism lasses of arrangements of pseudohords.The �rst method gives better asymptoti results fordense graphs, whereas the seond one is better forsparse graphs (roughly, with at most 35n edges). Forgraphs with m = O(n) the seond term in the expo-nent beomes more signi�ant. Sine m ≥ n/2, theexponent in the �rst upper bound an be bounded by
23.118m2 + o(1), using the entropy bound for the bi-nomial oe�ient. Similarly, the exponent in the se-ond upper bound an be bounded by 11.265m2+o(1).For suh very sparse graphs (for example, mathings),however, better upper bounds an be dedued morediretly from other known results.The upper bound T (G) ≤ 2O(m2) is trivially ob-tained from the upper bound on the number of unla-beled plane graphs (or planar maps). Indeed, every

drawing G of G an be transformed into a plane graph
H by subdividing the edges of G by its rossings andregarding the rossings of G as new 4-valent vertiesin H . The graph H has thus at most n +

(
m

2

) ver-ties, at most m+2
(
m

2

)
= m2 edges, no loops and nomultiple edges. Tutte [17℄ showed that there are

2(2M)!3M

M !(M + 2)!
= 2(log2(12)+o(1))Mrooted onneted planar maps with M edges (seealso [2, 3, 5℄). Walsh and Lehman [18℄ showed thatthe number of rooted onneted planar loopless mapswith M edges is

6(4M + 1)!

M !(3M + 3)!
= 2(log2(256/27)+o(1))M .This implies the upper bound T (G) ≤

2(log2(256/27)+o(1))m2 . Somewhat better estimatesould be obtained by reduing the problem to ount-ing 4-regular planar maps [15, 16℄, sine typiallyalmost all verties in H are the 4-valent verties ob-tained from the rossings of G. But suh a redutionwould be less straightforward and the resulting upperbound 2(
1
2 log2(196/27)+o(1))m2 still relatively high fordense graphs (for graphs with more than 27n edgesthe two upper bounds from Theorem 5 are better).The proof in [7℄ implies the upper bound T (Kn) ≤

2(1/12+o(1))(n4), although it is not expliitly statedthere. However, the key Proposition 7 in [7℄ is in-orret. We prove a orret version in the full paper.Note that by the redution to ounting planarmaps, for every �xed onstant k, we also obtain theupper bound 2O(km2) on the number of isomorphismlasses of onneted topologial graphs with m edgeswhere all pairs of edges are allowed to ross k times.2 A few open problemsThe problem of ounting the asymptoti number of�nonequivalent� simple drawings of a graph in theplane is answered only partially. Many open ques-tions remain.The gap between the lower and upper bounds on
Tw(G) proved in Theorem 2 is wide open, espeiallyfor graphs with low density. For graphs with cn2edges, the lower and upper bounds on logTw(G) dif-fer by a logarithmi fator. We onjeture that theorret answer is loser to the lower bound.We do not even know whether Tw(G) is a monotonefuntion with respet to the subgraph relation, sinethere are simple topologial graphs that annot be ex-tended to simple omplete topologial graphs. Due tosomewhat �rigid� properties of simple omplete topo-logial graphs, we have a muh better upper boundfor the omplete graph than, say, for the ompletebipartite graph on the same number of verties.
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Improved enumeration of simple topologial graphsProblem 1 Does the omplete graph Kn maximizethe value Tw(G) among the graphs G with n verties?More generally, is it true that Tw(H) ≤ Tw(G) if H ⊆

G?Our methods for proving upper bounds on the num-ber of weak isomorphism lasses of simple topologialgraphs do not generalize to the ase of topologialgraphs with two rossings per pair of edges allowed.Problem 2 What is the number of weak isomor-phism lasses of drawings of a graph G where everytwo independent edges are allowed to ross at mosttwie and every two adjaent edges at most one?For the omplete graph with n verties, Pah andTóth [13℄ proved the lower bound 2Ω(n2 logn) and theupper bound 2o(n
4).A nontrivial lower bound an be proved also in thease when G is a mathing. Akerman et al. [1℄ on-struted a system of n x-monotone urves where ev-ery pair of urves interset in at most one point wherethey either ross or touh, with Ω(n4/3) pairs of touh-ing urves. Eyal Akerman (personal ommuniation)noted that this also follows from an earlier result byPah and Sharir [11℄, who onstruted an arrange-ment of n segments with Ω(n4/3) vertially visiblepairs of disjoint segments. By hanging the drawing inthe neighborhood of every touhing point, we obtain

2Ω(n4/3) di�erent intersetion graphs of 2-intersetingurves, also alled string graphs of rank 2 [13℄. Thisimproves the trivial lower bound observed by Pahand Tóth [13℄.AknowledgementsThe author thanks Josef Cibulka for disussions aboutenumerating various ombinatorial objets.Referenes[1℄ E. Akerman, R. Pinhasi and S. Zerbib, Ontouhing urves, Bernoulli Reunion Confer-ene on Disrete and Computational Geometry ,EPFL, Lausanne, 2012.[2℄ E. A. Bender and L. B. Rihmond, A survey ofthe asymptoti behaviour of maps, Journal ofCombinatorial Theory, Series B 40(3) (1986),297�329.[3℄ E. A. Bender and N. C. Wormald, The numberof loopless planar maps, Disrete Mathematis54(2) (1985), 235�237.[4℄ J. Cibulka and J. Kyn£l, Tight bounds on themaximum size of a set of permutations with
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