Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
The algebraic size of the family of injective operators
Autor/es | Bernal González, Luis |
Departamento | Universidad de Sevilla. Departamento de Análisis Matemático |
Fecha de publicación | 2017-01 |
Fecha de depósito | 2017-02-08 |
Publicado en |
|
Resumen | In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every ... In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces. |
Agencias financiadoras | Junta de Andalucía Ministerio de Economía y Competitividad (MINECO). España |
Identificador del proyecto | FQM-127
P08-FQM-03543 info:eu-repo/grantAgreement/MINECO/MTM2015-65242-C2-1-P |
Cita | Bernal González, L. (2017). The algebraic size of the family of injective operators. Open Mathematics, 15 (1), 13-20. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
The algebraic size of the family ... | 265.5Kb | [PDF] | Ver/ | |