Article
Locally quasi-homogeneous free divisors are Koszul free
Author/s | Calderón Moreno, Francisco Javier
![]() ![]() ![]() ![]() ![]() ![]() ![]() Narváez Macarro, Luis ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Department | Universidad de Sevilla. Departamento de álgebra |
Date | 2002 |
Published in |
|
Abstract | Let X be a complex analytic manifold and D ⊂ X be a free divisor. If D is locally quasi-homogeneous, then the logarithmic de Rham complex associated to D is quasi-isomorphic to Rj∗(CX\D), which is a perverse sheaf. On the ... Let X be a complex analytic manifold and D ⊂ X be a free divisor. If D is locally quasi-homogeneous, then the logarithmic de Rham complex associated to D is quasi-isomorphic to Rj∗(CX\D), which is a perverse sheaf. On the other hand, the logarithmic de Rham complex associated to a Koszul-free divisor is perverse. In this paper, we prove that every locally quasi-homogeneous free divisor is Koszul free. |
Funding agencies | Ministerio de Educación y Ciencia (MEC). España |
Project ID. | PB97-0723
![]() 97-1644 ![]() |
Citation | Calderón Moreno, F.J. y Narváez Macarro, L. (2002). Locally quasi-homogeneous free divisors are Koszul free. Proceedings of the Steklov Institute of Mathematics, 238 (238), 81-85. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Locally quasi-homogeneous free ... | 129.4Kb | ![]() | View/ | |