dc.creator | Li, Daniel | es |
dc.creator | Queffélec, Hervé | es |
dc.creator | Rodríguez Piazza, Luis | es |
dc.date.accessioned | 2016-09-29T11:08:15Z | |
dc.date.available | 2016-09-29T11:08:15Z | |
dc.date.issued | 2012-04 | |
dc.identifier.citation | Li, D., Queffélec, H. y Rodríguez Piazza, L. (2012). On approximation numbers of composition operators. Journal of Approximation Theory, 164 (4), 431-459. | |
dc.identifier.issn | 0021-9045 | es |
dc.identifier.uri | http://hdl.handle.net/11441/46366 | |
dc.description.abstract | We show that the approximation numbers of a compact composition
operator on the weighted Bergman spaces Bα of the unit disk can tend to
0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least
exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example. | es |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | es |
dc.format | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.relation.ispartof | Journal of Approximation Theory, 164 (4), 431-459. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Approximation number | es |
dc.subject | Bergman space | es |
dc.subject | Carleson measure | es |
dc.subject | Composition operator | es |
dc.subject | Hardy space | es |
dc.subject | Interpolation sequence | es |
dc.subject | Reproducing kernel | es |
dc.subject | Weighted Bergman space | es |
dc.subject | Weighted shift | es |
dc.title | On approximation numbers of composition operators | es |
dc.type | info:eu-repo/semantics/article | es |
dcterms.identifier | https://ror.org/03yxnpp24 | |
dc.type.version | info:eu-repo/semantics/submittedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.contributor.affiliation | Universidad de Sevilla. Departamento de Análisis Matemático | es |
dc.relation.projectID | MTM 2009-08934 | es |
dc.relation.publisherversion | http://ac.els-cdn.com/S0021904511002103/1-s2.0-S0021904511002103-main.pdf?_tid=a632bd26-8634-11e6-8d96-00000aacb360&acdnat=1475147316_d31adc97f657548a29d66fa8da765010 | es |
dc.identifier.doi | 10.1016/j.jat.2011.12.003 | es |
dc.contributor.group | Universidad de Sevilla. FQM104: Analisis Matemático | es |
idus.format.extent | 34 p. | es |
dc.journaltitle | Journal of Approximation Theory | es |
dc.publication.volumen | 164 | es |
dc.publication.issue | 4 | es |
dc.publication.initialPage | 431 | es |
dc.publication.endPage | 459 | es |
dc.identifier.idus | https://idus.us.es/xmlui/handle/11441/46366 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación (MICIN). España | |