Artículo
On approximation numbers of composition operators
Autor/es | Li, Daniel
Queffélec, Hervé Rodríguez Piazza, Luis ![]() ![]() ![]() ![]() ![]() ![]() |
Departamento | Universidad de Sevilla. Departamento de Análisis Matemático |
Fecha | 2012-04 |
Publicado en |
|
Resumen | We show that the approximation numbers of a compact composition
operator on the weighted Bergman spaces Bα of the unit disk can tend to
0 arbitrarily slowly, but that they never tend quickly to 0: they grow at ... We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces Bα of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at least exponentially, and this speed of convergence is only obtained for symbols which do not approach the unit circle. We also give an upper bounds and explicit an example. |
Agencias financiadoras | Ministerio de Ciencia e Innovación (MICIN). España |
Identificador del proyecto | MTM 2009-08934
![]() |
Cita | Li, D., Queffélec, H. y Rodríguez Piazza, L. (2012). On approximation numbers of composition operators. Journal of Approximation Theory, 164 (4), 431-459. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
On approximation numbers of ... | 375.7Kb | ![]() | Ver/ | |