Article
Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces
Author/s | Lefèvre, Pascal
Li, Daniel Queffélec, Hervé Rodríguez Piazza, Luis |
Department | Universidad de Sevilla. Departamento de Análisis Matemático |
Publication Date | 2011-09 |
Deposit Date | 2016-09-09 |
Published in |
|
Abstract | We construct an analytic self-map ϕ of the unit disk and an Orlicz function Ψ for which the composition operator of symbol ϕ is compact on the Hardy-Orlicz space HΨ, but not on the Bergman-Orlicz space BΨ. For that, we
first ... We construct an analytic self-map ϕ of the unit disk and an Orlicz function Ψ for which the composition operator of symbol ϕ is compact on the Hardy-Orlicz space HΨ, but not on the Bergman-Orlicz space BΨ. For that, we first prove a Carleson embedding theorem, and then characterize the compactness of composition operators on Bergman-Orlicz spaces, in terms of Carleson function (of order 2). We show that this Carleson function is equivalent to the Nevanlinna counting function of order 2. |
Citation | Lefèvre, P., Li, D., Queffélec, H. y Rodríguez Piazza, L. (2011). Compact composition operators on Bergman-Orlicz spaces. Revista de la Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas, 105 (2), 247-260. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Compact composition operators ... | 345.3Kb | [PDF] | View/ | |