Article
A test for the Riemann hypotesis
Author/s | Arias de Reyna Martínez, Juan |
Department | Universidad de Sevilla. Departamento de Análisis Matemático |
Publication Date | 2008-09 |
Deposit Date | 2016-04-25 |
Published in |
|
Abstract | We prove that the Riemann Hypothesis holds if and only if
I = Z +∞ 1 ˘ Π(x) − Li(x) ¯2 x −2 dx < +∞
with I = J, where J is some definite, computable real number (1.266 < J < 1.273). This provides us with a numerical test ... We prove that the Riemann Hypothesis holds if and only if I = Z +∞ 1 ˘ Π(x) − Li(x) ¯2 x −2 dx < +∞ with I = J, where J is some definite, computable real number (1.266 < J < 1.273). This provides us with a numerical test for the Riemann Hypothesis. The main interest of our test lies in the fact that it can also supply a goal. Namely, having computed J(a) := R a 1 ˘ Π(x) − Li(x) ¯2 x −2 dx < J for a number of values of a = an, we can estimate a value a for which, within our precision, we will have J(a) ≈ J. |
Funding agencies | Ministerio de Ciencia e Innovación (MICIN). España |
Project ID. | MTM2006-05622 |
Citation | Arias de Reyna Martínez, J. (2008). A test for the Riemann hypotesis. |
Files | Size | Format | View | Description |
---|---|---|---|---|
A test for the Riemann hypothe ... | 190.3Kb | [PDF] | View/ | |