Show simple item record

Article

dc.creatorBailey, Robert F.
dc.creatorCáceres González, José
dc.creatorGarijo Royo, Delia
dc.creatorGonzález Herrera, Antonio
dc.creatorMárquez Pérez, Alberto
dc.creatorMeagher, Karen
dc.creatorPuertas González, María Luz
dc.date.accessioned2016-03-18T11:05:37Z
dc.date.available2016-03-18T11:05:37Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/11441/38816
dc.description.abstractA set of vertices SS in a graph GG is a resolving set for GG if, for any two vertices u,vu,v, there exists x∈Sx∈S such that the distances d(u,x)≠d(v,x)d(u,x)≠d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.relation.ispartofEuropean Journal of Combinatorics, 34 (4), 736-751.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleResolving sets for Johnson and Kneser graphses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es
dc.identifier.doihttp://dx.doi.org/10.1016/j.ejc.2012.10.008es
dc.journaltitleEuropean Journal of Combinatoricses
dc.publication.volumen34es
dc.publication.issue4es
dc.publication.initialPage736es
dc.publication.endPage751es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/38816

FilesSizeFormatViewDescription
Resolvings sets.pdf263.4KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional