Mostrar el registro sencillo del ítem

Artículo

dc.creatorCasanueva Morato, Danieles
dc.creatorAyuso Martínez, Álvaroes
dc.creatorIndiveri, Giacomoes
dc.creatorDomínguez Morales, Juan Pedroes
dc.creatorJiménez Moreno, Gabrieles
dc.date.accessioned2024-10-11T11:17:15Z
dc.date.available2024-10-11T11:17:15Z
dc.date.issued2024-09-30
dc.identifier.issn2640-4567es
dc.identifier.urihttps://hdl.handle.net/11441/163536
dc.description.abstractThe rapid expansion of information systems in all areas of society demands more powerful, efficient, and low-energy consumption computing systems. Neuromorphic engineering has emerged as a solution that attempts to mimic the brain to incorporate its capabilities to solve complex problems in a computationally and energy-efficient way in real time. Within neuromorphic computing, building systems to efficiently store the information is still a challenge. Among all the brain regions, the hippocampus stands out as a short-term memory capable of learning and recalling large amounts of information quickly and efficiently. Herein, a spike-based bio-inspired hippocampus sequential memory model is proposed that makes use of the benefits of analog computing and spiking neural networks (SNNs): noise robustness, improved real-time operation, and energy efficiency. This model is applied to robotic navigation to learn and recall trajectories that lead to a goal position within a known grid environment. The model is implemented on the special-purpose SNNs mixed-signal DYNAP-SE hardware platform. Through extensive experimentation together with an extensive analysis of the model's behavior in the presence of external noise sources, its correct functioning is demonstrated, proving the robustness and consistency of the proposed neuromorphic sequential memory system.es
dc.formatapplication/pdfes
dc.format.extent16 p.es
dc.language.isoenges
dc.publisherWileyes
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAnalog sequential memoryes
dc.subjectDYNAP-SEes
dc.subjectHippocampus modeles
dc.subjectNeuromorphic engineeringes
dc.subjectRobustness analysises
dc.subjectSpiking neural networkses
dc.titleAnalog Sequential Hippocampal Memory Model for Trajectory Learning and Recalling: A Robustness Analysis Overviewes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadoreses
dc.relation.projectIDTED2021-130825B-I00es
dc.relation.projectIDPID2019-105556GB-C33es
dc.relation.projectIDPDC2023-145841-C33es
dc.relation.projectIDFPU20/01994es
dc.relation.projectIDPID2023-149071NB-C54es
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202400282es
dc.identifier.doi10.1002/aisy.202400282es
dc.contributor.groupUniversidad de Sevilla. TEP108: Robótica y Tecnología de Computadoreses
dc.journaltitleAdvanced Intelligent Systemses
dc.publication.issue2400282es
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (MICINN). Españaes

FicherosTamañoFormatoVerDescripción
AIS_casanueva-morato_2024_anal ...1.986MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional