Article
Algebraic Approach to the Minimum-Cost Multi-Impulse Orbit-Transfer Problem
Author/s | Avendaño, M.
Martín Molina, Verónica Martín-Morales, J. Ortigas-Galindo, J. |
Department | Universidad de Sevilla. Departamento de Didáctica de las Matemáticas |
Publication Date | 2016 |
Deposit Date | 2024-08-29 |
Published in |
|
Abstract | A purely algebraic formulation (i.e., polynomial equations only) of the minimum-cost multi-impulse orbit-transfer
problem without time constraints is presented, while keeping all the variables with a precise physical ... A purely algebraic formulation (i.e., polynomial equations only) of the minimum-cost multi-impulse orbit-transfer problem without time constraints is presented, while keeping all the variables with a precise physical meaning. General algebraic techniques are applied to solve these equations (resultants, Gröbner bases, etc.) in several situations of practical interest of different degrees of generality. For instance, a proof of the optimality of the Hohmann transfer for the minimum-fuel two-impulse circular-to-circular orbit-transfer problem is provided. Finally, a general formula is also provided for the optimal two-impulse in-plane transfer between two rotated elliptical orbits under a mild symmetry assumption on the two points where the impulses are applied (which, it is conjectured, can be removed). |
Funding agencies | Junta de Andalucía Gobierno de Aragón Centro Universitario de la Defensa de Zaragoza Ministerio de Economía y Competitividad (MINECO). España |
Project ID. | FQM327
FQM333 E15 MTM2011-22621 MTM2014-52197-P MTM2013-45710-C2-1P ID2013-15 |
Citation | Avendaño, M., Martín Molina, V., Martín-Morales, J. y Ortigas-Galindo, J. (2016). Algebraic Approach to the Minimum-Cost Multi-Impulse Orbit-Transfer Problem. Journal of Guidance, Control, and Dynamics, 39 (8), 1734-1743. https://doi.org/10.2514/1.G001598. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Orbit_Transfers.pdf | 781.7Kb | [PDF] | View/ | Artículo (versión aceptada) |