Show simple item record

Article

dc.creatorGutiérrez-Mejía, Fabiolaes
dc.creatorVásquez-López, Claudiaes
dc.creatorVargas-Coronado, Rossana F.es
dc.creatorVilla-de la Torre, Fabiola E.es
dc.creatorArana-Argaez, Víctor E.es
dc.creatorRodríguez-Buenfil, Ingrid M.es
dc.creatorGamboa-Angulo, María M.es
dc.creatorTorres Hernández, Yadires
dc.creatorCauich-Rodríguez, Juan V.es
dc.date.accessioned2024-06-27T10:57:43Z
dc.date.available2024-06-27T10:57:43Z
dc.date.issued2024-08
dc.identifier.issn2352-4928es
dc.identifier.urihttps://hdl.handle.net/11441/160927
dc.description.abstractIn the quest for advancing the performance of metallic implants, surface modification emerges as a pivotal strategy to mitigate ion depletion, enhance the host's biological response, and exhibit anti-microbial behavior with reduced cytotoxicity. In this study, we developed a non-traditional electrophoretic deposition (EPD) hybrid coating for medical-grade stainless steel 316 L (SS316L) surfaces covered with a segmented polyurethane (SPU). These coatings are composed of anatase TiO₂ nanotubes (TiO₂_A), and antibiotics (nisin N or gentamicin G). We characterized the modified metals using FTIR and Raman spectroscopy, contact angle measurements, AFM, TGA, SEM-EDX, as well as assessing their antimicrobial response and cell cytotoxicity. The results demonstrate the formation of porous surfaces with embedded nanotubes and antibiotics within and on the polyurethane surfaces. Samples with SPU+ TiO₂_AG EPD exhibited superior coverage, antimicrobial properties, and enhanced viability compared to cases where only particles or antibiotics were coated individually. Additionally, samples of SPU+ TiO₂_AN EPD displayed favorable hydrophilicity and suitable cytotoxicity. Therefore, the synergistic effect of nanoparticles and antibiotics positively influences the functionality of the coating.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectElectrophoretic depositiones
dc.subjectAnatasees
dc.subjectNisines
dc.subjectGentamicines
dc.subjectPolyurethanees
dc.subjectCoatingses
dc.titleElectrophoretic deposition of TiO₂ nanotubes and antibiotics on polyurethane coated stainless steel for improved antibacterial response and cell viabilityes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transportees
dc.relation.projectIDCONACYT 1360es
dc.relation.projectIDCONACYT 248378es
dc.relation.projectIDPID2022–137911OB-I00es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352492824014090es
dc.identifier.doi10.1016/j.mtcomm.2024.109428es
dc.contributor.groupUniversidad de Sevilla. TEP123: Metalurgia e Ingeniería de los Materialeses
dc.journaltitleMaterials Today Communicationses
dc.publication.volumen40es
dc.publication.issue109428es
dc.contributor.funderConsejo Nacional de Ciencia y Tecnología (CONACYT). Méxicoes
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (MICINN). Españaes

FilesSizeFormatViewDescription
MTC_torres-hernandez_2024_elec ...7.035MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Atribución-NoComercial 4.0 Internacional
Except where otherwise noted, this item's license is described as: Atribución-NoComercial 4.0 Internacional