Mostrar el registro sencillo del ítem

Artículo

dc.creatorCanas Moreno, Salvadores
dc.creatorPiñero Fuentes, Enriquees
dc.creatorRíos Navarro, José Antonioes
dc.creatorCascado Caballero, Danieles
dc.creatorPérez-Peña, Fernandoes
dc.creatorLinares Barranco, Alejandroes
dc.date.accessioned2024-05-22T09:42:12Z
dc.date.available2024-05-22T09:42:12Z
dc.date.issued2023-07
dc.identifier.issn0929-5593es
dc.identifier.issn1573-7527es
dc.identifier.urihttps://hdl.handle.net/11441/158793
dc.description.abstractMuscles are stretched with bursts of spikes that come from motor neurons connected to the cerebellum through the spinal cord. Then, alpha motor neurons directly innervate the muscles to complete the motor command coming from upper biological structures. Nevertheless, classical robotic systems usually require complex computational capabilities and relative high-power consumption to process their control algorithm, which requires information from the robot’s proprioceptive sensors. The way in which the information is encoded and transmitted is an important difference between biological systems and robotic machines. Neuromorphic engineering mimics these behaviors found in biology into engineering solutions to produce more efficient systems and for a better understanding of neural systems. This paper presents the application of a Spike-based Proportional-Integral-Derivative controller to a 6-DoF Scorbot ER-VII robotic arm, feeding the motors with Pulse-Frequency-Modulation instead of Pulse-Width-Modulation, mimicking the way in which motor neurons act over muscles. The presented frameworks allow the robot to be commanded and monitored locally or remotely from both a Python software running on a computer or from a spike-based neuromorphic hardware. Multi-FPGA and single-PSoC solutions are compared. These frameworks are intended for experimental use of the neuromorphic community as a testbed platform and for dataset recording for machine learning purposes.es
dc.formatapplication/pdfes
dc.format.extent15 p.es
dc.language.isoenges
dc.publisherSpringeres
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNeuromorphic engineeringes
dc.subjectSpike-based motor controles
dc.subjectFPGAes
dc.subjectRobotic armes
dc.titleTowards neuromorphic FPGA-based infrastructures for a robotic armes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadoreses
dc.relation.projectIDPID2019- 105556GB- C33es
dc.relation.projectIDPCI2019-111841-2es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10514-023-10111-xes
dc.identifier.doi10.1007/s10514-023-10111-xes
dc.contributor.groupUniversidad de Sevilla. TEP108: Robótica y Tecnología de Computadoreses
dc.journaltitleAutonomous Robotses
dc.publication.volumen47es
dc.publication.initialPage947es
dc.publication.endPage961es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es
dc.contributor.funderEuropean Union (UE). H2020es

FicherosTamañoFormatoVerDescripción
AR_linares-barranco_2023_towar ...2.016MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional