Mostrar el registro sencillo del ítem

Artículo

dc.creatorRedjem, Walides
dc.creatorAmsellem, Ariel J.es
dc.creatorAllen, Frances I.es
dc.creatorBenndorf, Gabrielees
dc.creatorBin, Jianhuies
dc.creatorBulanov, Stepanes
dc.creatorEsarey, Erices
dc.creatorFeldman, Leonard C.es
dc.creatorFerrer Fernández, Francisco Javieres
dc.creatorGarcía López, Francisco Javieres
dc.creatorSchenkel, Thomases
dc.date.accessioned2024-05-16T13:49:03Z
dc.date.available2024-05-16T13:49:03Z
dc.date.issued2023
dc.identifier.citationRedjem, W., Amsellem, A.J., Allen, F.I., Benndorf, G., Bin, J., Bulanov, S.,...,Schenkel, T. (2023). Defect Engineering of Silicon with Ion Pulses from Laser Acceleration. Communications Materials, 4 (1), 22. https://doi.org/10.1038/s43246-023-00349-4.
dc.identifier.issn2662-4443es
dc.identifier.urihttps://hdl.handle.net/11441/158460
dc.description.abstractDefect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon with ion pulses from a laser accelerator in the laser intensity range of 1019 W cm−2 and ion flux levels of up to 1022 ions cm−2 s−1, about five orders of magnitude higher than conventional ion implanters. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples locally pre-heated by high energy ions from the same laser-ion pulse. Silicon crystals exfoliate in the areas of highest energy deposition. Color centers, predominantly W and G-centers, form directly in response to ion pulses without a subsequent annealing step. We find that the linewidth of G-centers increases with high ion flux faster than the linewidth of W-centers, consistent with density functional theory calculations of their electronic structure. Intense ion pulses from a laser-accelerator drive materials far from equilibrium and enable direct local defect engineering and high flux doping of semiconductors.es
dc.description.sponsorshipOffice of Science DE-AC02-05CH11231es
dc.formatapplication/pdfes
dc.format.extent10 p.es
dc.language.isoenges
dc.publisherSpringer Naturees
dc.relation.ispartofCommunications Materials, 4 (1), 22.
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleDefect Engineering of Silicon with Ion Pulses from Laser Accelerationes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nucleares
dc.relation.projectIDDE-AC02-05CH11231es
dc.relation.publisherversionhttps://doi.org/10.1038/s43246-023-00349-4es
dc.identifier.doi10.1038/s43246-023-00349-4es
dc.journaltitleCommunications Materialses
dc.publication.volumen4es
dc.publication.issue1es
dc.publication.initialPage22es
dc.contributor.funderOffice of Science. EE.UU.es

FicherosTamañoFormatoVerDescripción
Defect engineering of silicon ...1.839MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional