Mostrar el registro sencillo del ítem

Artículo

dc.creatorMora Macías, Juanes
dc.creatorAyensa Jiménez, Jacoboes
dc.creatorReina Romo, Estheres
dc.creatorDoweidar, Mohamed Hamdyes
dc.creatorDomínguez Abascal, Jaimees
dc.creatorDoblaré, M.es
dc.creatorSanz Herrera, José Antonioes
dc.date.accessioned2024-01-22T19:56:40Z
dc.date.available2024-01-22T19:56:40Z
dc.date.issued2020-08
dc.identifier.citationMora-Macías, J., Ayensa-Jiménez, J., Reina-Romo, E., Doweidar, M.H., Domínguez, J., Doblaré, M. y Sanz-Herrera, J.A. (2020). A multiscale data-driven approach for bone tissue biomechanics. Computer Methods in Applied Mechanics and Engineering, 368, 113136. https://doi.org/10.1016/j.cma.2020.113136.
dc.identifier.issn0045-7825es
dc.identifier.urihttps://hdl.handle.net/11441/153776
dc.description.abstractThe data-driven methodology with application to continuum mechanics relies upon two main pillars: (i) experimental characterization of stress–strain pairs associated to different loading states, and (ii) numerical elaboration of the elasticity equations as an optimization (searching) algorithm using compatibility and equilibrium as constraints. The purpose of this work is to implement a multiscale data-driven approach using experimental data of cortical bone tissue at different scales. First, horse cortical bone samples are biaxially loaded and the strain fields are recorded over a region of interest using a digital image correlation technique. As a result, both microscopic strain fields and macroscopic strain states are obtained by a homogenization procedure, associated to macroscopic stress loading states which are considered uniform along the sample. This experimental outcome is here referred as a multiscale dataset. Second, the proposed multiscale data-driven methodology is implemented and analyzed in an example of application. Results are presented both in the macroscopic and microscopic scales, with the latter considered just as a post-process step in the formulation. The macroscopic results show non-smooth strain and stress patterns as a consequence of the tissue heterogeneity which suggest that a preassumed linear homogeneous orthotropic model may be inaccurate for bone tissue. Microscopic results show fluctuating strain fields – as a consequence of the interaction and evolution of the microconstituents – an order of magnitude higher than the averaged macroscopic solution, which evidences the need of a multiscale approach for the mechanical analysis of cortical bone, since the driving force of many biological bone processes is local at the microstructural level. Finally, the proposed multiscale data-driven technique may also be an adequate strategy for the solution of intractable large size multiscale FE computational approaches since the solution at the microscale is obtained as a postprocessing. As a main conclusion, the proposed multiscale data-driven methodology is a useful alternative to overcome limitations in the continuum mechanical study of the bone tissue. This methodology may also be considered as a useful strategy for the analysis of additional biological or technological hierarchical multiscale materials.es
dc.description.sponsorshipMinisterio de Economía y Competitividad DPI2014-58233-P, DPI2017-82501-P, PGC2018-097257-B-C31es
dc.description.sponsorshipConsejería de Innovación y Conocimiento, Junta de Andalucía US-1261691es
dc.formatapplication/pdfes
dc.format.extent22 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofComputer Methods in Applied Mechanics and Engineering, 368, 113136.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData-driven approaches
dc.subjectComputational biomechanicses
dc.subjectExperimental bone tissue mechanicses
dc.subjectNumerical simulationes
dc.subjectMultiscale analysises
dc.titleA multiscale data-driven approach for bone tissue biomechanicses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDDPI2014-58233-Pes
dc.relation.projectIDDPI2017-82501-Pes
dc.relation.projectIDPGC2018-097257-B-C31es
dc.relation.projectIDUS-1261691es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0045782520303212es
dc.identifier.doi10.1016/j.cma.2020.113136es
dc.contributor.groupUniversidad de Sevilla. TEP245: Ingeniería de las Estructurases
dc.journaltitleComputer Methods in Applied Mechanics and Engineeringes
dc.publication.volumen368es
dc.publication.initialPage113136es
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). Españaes
dc.contributor.funderConsejería de Innovación y Conocimiento, Junta de Andalucíaes

FicherosTamañoFormatoVerDescripción
CMAME_2020_Mora_Sanz-Herrera_A ...1.947MbIcon   [PDF] Ver/Abrir   Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional