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Abstract

The data-driven methodology with application to continuum mechanics

relies upon two main pillars: (i) experimental characterization of stress-strain

pairs associated to different loading states, and (ii) numerical elaboration

of the elasticity equations as an optimization (searching) algorithm using

compatibility and equilibrium as constraints. The purpose of this work is

to implement a multiscale data-driven approach using experimental data of

cortical bone tissue at different scales. First, horse cortical bone samples are

biaxially loaded and the strain fields are recorded over a region of interest

using a digital image correlation technique. As a result, both microscopic

strain fields and macroscopic strain states are obtained by a homogenization

procedure, associated to macroscopic stress loading states which are consid-

ered uniform along the sample. This experimental outcome is here referred as
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a multiscale dataset. Second, the proposed multiscale data-driven methodol-

ogy is implemented and analyzed in an example of application. Results are

presented both in the macroscopic and microscopic scales, with the latter

considered just as a post-process step in the formulation. The macroscopic

results show non-smooth strain and stress patterns as a consequence of the

tissue heterogeneity which suggest that a preassumed linear homogeneous or-

thotropic model may be inaccurate for bone tissue. Microscopic results show

fluctuating strain fields –as a consequence of the interaction and evolution

of the microconstituents– an order of magnitude higher than the averaged

macroscopic solution, which evidences the need of a multiscale approach for

the mechanical analysis of cortical bone, since the driving force of many

biological bone processes is local at the microstructural level. Finally, the

proposed multiscale data-driven technique may also be an adequate strat-

egy for the solution of intractable large size multiscale FE2 computational

approaches since the solution at the microscale is obtained as a postprocess-

ing. As a main conclusion, the proposed multiscale data-driven methodology

is a useful alternative to overcome limitations in the continuum mechanical

study of the bone tissue. This methodology may also be considered as a useful

strategy for the analysis of additional biological or technological hierarchical

multiscale materials.

Keywords: Data-driven approach, Computational biomechanics,

Experimental bone tissue mechanics, Numerical simulation, Multiscale

analysis
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1. Introduction

1.1. Data-Driven approach in computational mechanics and multiscale anal-

ysis

Data science (DS) has disrupted in the last years in industry along a vari-

ety of diverse fields, such as marketing and e-commerce [1], social sciences [2],

healthcare [3] or the internet of things [4]. DS has also impacted in contin-

uum mechanics with classical model-based material constitutive laws being

progressively replaced by measured discrete stress–strain couples, which pro-

vide a more accurate and realistic representation of the physical relationships.

The data-driven (DD) formulation in continuum mechanics was presented a

few years ago in the context of elastostatics [5] and extended to elastody-

namics in [6], as an alternative to classical model-based approaches. Related

problems of the DD methodology, such as the unavoidable noise coming from

experimental testing campaigns, were addressed in [7] and in [8]. Moreover,

[9] presented a theoretical description to fill and expand (upsampling) miss-

ing, incomplete and unreliable (noisy) datasets. This latter framework is

used in this work in a particular case of interest.

The DD mechanics scheme proceeds by searching the closest strain-stress

couple in the measuring set, through the minimization of a certain metric

–which may eventually include a stochastic definition [8]–. The optimiza-

tion problem is then constrained to fulfill the equilibrium and compatibility

equations, which are introduced by means of Lagrange multipliers [5]. An

alternative formulation was presented in [10] introducing the concept of con-

stitutive manifold, which embeds the stress-strain couples, while the found

solution satisfies all the required equations. The description of the construc-
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tion of such manifold is detailed in [11].

On the other hand, multiscale simulations in classical continuum me-

chanics, establishes the analysis at different spatial and temporal observation

scales such that the response of the upper (coarse) scale is a direct conse-

quence of the evolution of the lower (fine) scale. The purpose of multiscale

analyses is two-fold: First, to establish less phenomenological models based

on more fundamental principles and spatio-temporal resolutions. Second, to

have access to the distribution of the variables along both the fine and coarse

scales. This kind of multiscale approaches are especially well-suited to the

mechanical analysis of heterogeneous materials, which contain an underlying

microstructure such as natural (biological) or artificial (technological) ma-

terials. Different multiscale techniques have been implemented to account

for plasticity and the subsequent microstructure evolution [12, 13], poroelas-

ticity and microstructural fluid circulation [14] or micromechanical analysis

of composite adhesives [15, 16] to cite a few. The multiscale approach has

also been applied in the framework of bone tissue mechanics. In these ap-

plications, loads are transferred at the macroscopic organ scale whereas the

driving stimuli of the internal biological evolution processes are local and

microstructural [17, 18, 19]. Several examples for bone tissue engineering

can be seen in [20, 21, 22] among other. The reader is addressed to [23] for

a review of multiscale techniques applied to continuum models.

Multiscale analysis based on finite elements are usually called FE2 [24, 25]

due to both the complexity and CPU time scale to the power of 2: the cor-

responding simulations have to be performed both at the macro and micro

levels, this latter defined at each Gauss point of the macro finite element
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mesh. Even though some remedies have been proposed in the literature

to alleviate the CPU time demand [26], this kind of analyses is usually in-

tractable with limited applicability to the practical use. The present work

exploits the experimental data acquisition of the mechanical characterization

of a bone specimen, available both at the tissue (macro) and microstructural

(micro) levels, to propose a multiscale approach in the context of DD. It is

clear that the feasibility of this DD technique relies on the availability of

test data at both scales. However, once a proper macro and micro tissue

characterization is performed, the solution at the microstructure is obtained

as a postprocessing in the DD methodology, avoiding prohibitive CPU times.

The experimental protocol used in this work, in the context of bone tissue

mechanics, is reviewed next.

1.2. Experimental characterization of bone tissues

DD technique is inherently linked to the experimental characterization

of the material in hands, such as the bone tissue in this study, prior to DD

simulations. An example of bone tissue is cortical bone, which is found in

the diaphysis of long bones as an outer layer of the trabecular bone. At the

macroscopic level, it looks like a compact and continuous solid. However, at

the microscopic level, the cortical bone structure is very complex as seen in

Fig. 1. Therefore, the mechanical response and properties measured at the

macroscopic level of the cortical bone are influenced by its microarchitecture.

This relation between micro and macroscale has been studied for decades.

For example, [27] related the mechanical properties with the collagen fiber

orientation. More recently, [28] showed that the nanoscale heterogeneity

of the mechanical properties of the bone promotes energy dissipation. A
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multiscale DD approach could take advantage from the data provided by

experimental techniques which allows characterizing the cortical bone tissue

at the microscopic level.

Among the techniques used to characterize the cortical bone tissue at

that microscopic level, histologies, and microscopy techniques allow charac-

terizing biological aspects of the bone microarchitecture [27]. More recent

techniques, such as microcomputed tomography, provide bone microarchitec-

ture, and other parameters that may be related with mechanical properties

such as the mineral density [29, 30]. Nanoindentation can also provide me-

chanical properties of a bone surface, which in combination with microscopic

techniques or microcomputed tomography may define the bone heterogeneity

and the spatial variations of its mechanical properties [28, 31]. However, none

of these methods is able to measure the micromechanical response (stress

and/or strain at the microscopic level) of the bone tissue during mechanical

experiments.

Digital image correlation (DIC) technique has shown advantages over the

above mentioned methods to measure the microscopic strain field, of the or-

der of tens of microns, in real time, in bone samples under different loading

conditions. Consequently, the macroscopic strain field, of the order of mil-

limeters, can be obtained by averaging along the domain of the region of

interest, or the microstructural representative volume element (RVE). This

technique consists in comparing the positions in a speckle pattern of refer-

ence, usually spray-painted at the loaded sample surface, where the images

are taken. Refs. [32] and [33] used DIC to compute the strain field in a region

of the surface of a mouse tibia, with a resolution of 125 µm distance among
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the field strain points. Thompson et al. [34] also used DIC for determining

the local mechanical conditions within the early bone callus providing strain

fields of the same order of magnitude. Currently, micro-strain fields provided

by DIC measurements have been integrated into experimental studies which

combine different length scale measurements (in situ loading, digital image

correlation, and synchrotron X-ray) in order to understand the deformation

mechanisms within the bone tissue [35]. As a conclusion, DIC is a contrasted

and validated technique to measure microscopic strain fields above the mi-

cron scale, and associated strain stress macroscopic field in bone tissue.

Figure 1: Microarchitecture of cortical (compact) bone tissue [36].
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1.3. Objective and organization of the paper

The main objective of the paper is to present a multiscale DD study

in the framework of bone tissue mechanical behavior. According to the DD

methodology, it includes an ad hoc mechanical characterization of the cortical

bone tissue –through macroscopic stress–strain pairs and microscopic strain

fields– by means of DIC measurements under different loads and boundary

conditions. This information is used as a multiscale dataset (including a

data completion technique) along a specific algorithmic development for the

equations. The paper is then organized according to this scheme: Section

2 describes the bone tissue characterization using the DIC technique at the

microstructural scale. On the other hand, the numerical treatment of the

elasticity equations as well as the strategy to deal with the experimental

results both at the macro- and micro-scales along the formulation, is also

shown in section 2. Section 3 presents both tissue characterization results,

as well as multiscale DD results in a selected example of application. The

discussion is addressed in section 4, whereas some final conclusions are drawn

at the end of the paper.

2. Materials and methods

2.1. Experimental setup, bone tissue characterization

A sample of cortical bone was taken from the mid diaphysis of the femur

of an adult horse. It was extracted in the longitudinal direction and then it

was sawed and polished with carbide papers (P600 to P4000) and diamond

slurry. The final dimension of the sample was 50 × 20 mm with a thickness

of 4 mm (fig. 2a). The sample was subsequently embedded in epoxy resin to
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fix it to the mechanical testing machine (fig. 2b). Then, it was spray-painted

to generate a speckle pattern for the strain measurements as explained next.

(a) 

(b) 

Figure 2: Sample preparation. (a) Sample of an adult horse femur after sawing and

polishing; (b) the sample was subsequently embedded in epoxy resin and fixed to the

threaded ends.

The loading of the specimen was performed using a push-pull testing

machine that allows applying macroscopic biaxially longitudinal (LF) as well

as transversal (TF) compressive forces (see fig. 3). Both longitudinal and
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transversal loading directions were aligned with the axial and circumferential

directions of the bone specimen. Moreover, it was assumed that bone shows

orthogonal (rhombic) symmetries along these principal axes, since they are

associated to the main directions of bone growth [37]. We validated this

hypothesis since longitudinal and transversal load directions in fig. 3 provided

negligible values of the shear strain component for different loading states

(data not shown in the paper). This machine consists of a hydraulic actuator

(KEELAVITE) directed by an automatic control (MTS 407) which allows

applying cyclic LF up to 50 kN with frequencies ranging between 0 and 50 Hz

(fig. 3). The distal side of the sample was threaded to the fixed frame whilst

the proximal one was threaded to the piston of the machine, which compresses

the sample. Additionally, a transversal compressive force (TF) was applied

in the mid-section of the specimen by means of a screw-type actuator which

is manually controlled [38] (fig. 3). This device allows measuring forces up

to 1500 N with a load cell connected in series.

The mechanical tests consisted of the application of macroscopic LF forces

following a triangular wave (amplitude: 750 N, mean force value: -750 N

approximately, frequency: 0.0887 s−1) while macroscopic TF changed within

the range 0 to 600 N approximately.

The microscopic strain fields were measured in the region of interest dur-

ing the mechanical testing using a commercial digital image correlation (DIC)

system (Limess, Vic Snap, and Vic2D) (fig. 4a). The camera was mounted

on a tripod and positioned in front of the loading system at a distance of 1

m approximately. It provides a 38 × 32 mm field of view in the sample (2452

× 2052 pixels, which involves approximately 15 µm pixel size and 57 µm
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Figure 3: Scheme of the experimental mechanical testing setup: sample (1); longitudinal

actuator (2), longitudinal load cell (3); transversal actuator (4), transversal load cell (5);

DIC camera (6); region of interest (7). The sample is subjected to longitudinal (LF) and

transversal (TF) forces.
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distance between the field strain points). Strain variations at lower scales

microstructure and heterogeneities than that considered in this work (e.g.

mineral bone scale below the micron scale) and below the DIC strain field

resolution (57 µm distance between points) are not taken into account and

are out of the scope of this study. Since strains were measured in an 11 × 10

mm region of interest (fig. 4b), around 733 × 667 pixels, 192 × 176 strain

field points were generated (fig. 4c). The images of the sample were taken at

a rate of 0.05 Hz (at each 50 N LF interval approximately). The used correla-

tion algorithm to estimate the displacements (Vic2D) is based on gray value

interpolation. Depending on the gray value, an intensity pattern is defined at

each point. Intensity is a function that depends on the position, displacement

and strain values. Therefore, the difference in intensity for the same position

is due to changes in the displacement and strain. The algorithm determines

the displacement and strain parameters so that the intensity values at each

point in the deformed and undeformed configurations match [39, 40]. Among

the different correlation options allowed by the software, normalized squared

differences has been used. The DIC system used the estimated displacement

in the speckle pattern spray-painted over the sample to calculate the strains

in the region of interest. The average pattern density was approximately 37

dots/mm2. It allows taking into account variations of the strain field due to

the bone microarchitecture as can be observed in fig. 5.

The DIC and the loading acquisition systems were synchronized so that

an image was taken at the same instant than the loading was registered.

Therefore, at each time point of the test, the macroscopic mechanical load

data (LF, TF), as well as the microscopic tissue strain fields (longitudinal
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(a) (b) (c) 

Figure 4: Strain measurement setup: (a) Photograph of the used DIC camera; (b) the

region of interest has been marked in dotted lines (10 × 11 mm); (c) domain strains

measured with DIC.
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(a) (b) 

Figure 5: (a) Bone sample microarchitecture and (b) speckle pattern of the sample in the

region of interest.
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and transversal strains) are obtained in the region of interest. A total of 199

loading states were simulated following this procedure.

If we interpret the microscopic region of interest, where the microscopic

strain fields were measured using DIC, as a representative volume element

(RVE) in the sense proposed by [41] i.e. a homogeneous volume that statisti-

cally represents the heterogeneity of the microscopic scale, macroscopic strain

fields εM can be obtained using homogenization as follows:

εM(εm) =
1

V

∫
V
εm(y) dV (1)

with y ∈ V , the RVE associated to the macroscopic point and V the RVE

volume.

As a result, the experimentally obtained dataset is composed of the

macroscopic stress-strain couples, in an RVE of the order of millimeters (i.e.

11 × 10 mm), assuming that the applied LF-TF load states are constant

along the specimen, as well as the microscopic strain fields, in the order of

tens of microns (i.e. 57 µm). We refer to this situation as a multiscale

dataset, which will be used for DD simulations.

2.2. Multiscale analysis in the context of the data-driven approach

2.2.1. Data completion technique

As pointed out in the introduction, new data completion techniques have

been proposed in the context of data-driven problems. Data completion tools

are very suitable in at least two contexts:

1. It allows using computational DD algorithms that need to perform

searches in complete spaces. This includes to augment data resolution,
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to expand data coverage and to fill missing data or gaps in the sample.

2. It can be used appropriately as a field reconstructor. Indeed, a synthetic

field may be computed from an existing dataset, but taking into account

reliability and physical admissibility of the data.

Here, the data-completion technique is used in these two ways. On the one

hand, at the macroscale (M) level, pairs of strain-stress couples εM and σM

are sampled from an obtained experimental setup as explained in the previous

section. This give us an unstructured dataset E = {(εM,i,σM,i)}i=1,...,N ,

where N is the sample size. However, this amount of data N may not be

large enough for some purposes. For instance, if there is no control in one

of the sampled variables, such as in longitudinal strains and stresses in our

experimental setup, data coverage may be poor. Besides, for computational

purposes, the resolution of data is often not high enough, needing some tools

to work, sometimes at the continuum level. The methodology presented in

[9] is therefore used in order to obtain, from a unstructured dataset E , a

new structured data-set satisfying ui = umin + i
n
(umax − umin), i = 1, . . . , n,

n being the number of upsampled points. umin and umax are the minimal

and maximal values reached by the variable u. u = εM ,σM . The filling

procedure is performed by the following strategy: for each stress state σM,∗,

a new strain state εM,∗ is computed by solving the minimization problem,

εM,∗ = argmin
εM

N∑
i=1

ϕ
[
d
(
σM,i,σM,∗)] d2 (εM,i, εM

)
(2)

where d is the euclidean distance and ϕ : R+ → [0; 1] is a suitable activation

function. This problem is easily solved by formulating a linear system, as

explained in [9].
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On the other hand, the data-completion technique was also used for the

computation of the microscale (m) strain field. In this case, the aim is to

obtain a microscale field, built from the data-set of possible microscale fields,

but compatible with the macroscale pairs of strains and stresses. The ap-

proach here is similar, except for the fact that we must impose the constraint

relating the macroscopic strain εM and the microscale strain field εm(y) as

expressed in equation (1).

As only the microscopic strains fields compose the multiscale dataset,

these are the only data that may be used in the minimization procedure to

obtain a microscale field. Therefore, the problem is here reduced to compute

εm,∗(y) by solving the following minimization problem:

εm,∗(y) = argmin
εm(y)

N∑
i=1

ϕ

[
d

(
1

V

∫
V
εm,i(y) dV, εM

)]
d2
(
εm(y), εm,i(y)

)
subject to

1

V

∫
V
εm(y) dV = εM

(3)

Note that 1
V

∫
V ε

m,i(y) dV is the macroscale strain associated to the mi-

croscale field εm,i(y), εM is the macroscopic strain whose microscale strain

field is intended to be obtained and E = {εm,i(y)}i=1,...,N. is the learning

dataset. As the constraint is linear, this problem is easily solved following

the two-steps strategy described in [9], where first a linear system is solved

and then the solution is projected into a manifold, obtaining the final result.

Of course, the accuracy of the result depends on the coverage of the dataset.

For the data presented in this work, a Radial Basis Function (RBF),

ϕ(u) = exp(−u2

ζ
), was selected in Eqs. (2) and (3) as activation function,

with ζ the spread parameter.
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Figure 6: Numerical scheme of the multiscale DD implementation in a finite element

framework.
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2.2.2. Multiscale data-driven computational approach

In this section, the multiscale DD computational approach and its nu-

merical implementation are exposed in the framework of a finite element dis-

cretization. The implementation is an extension of the algorithm presented

by [5], developed at small strains, and proceeds by searching (macroscopi-

cally) the closest stress-strain pair, i.e.
(
σM , εM

)
, to the multiscale dataset

D ≡
(
σM , εM × εm(y)

)
D

. Note that superindices M and m refer to the

macro and micro datasets, see fig. 6. That is, the dataset contains both

the macroscopic stress-strain pairs, as well as the associated microscopic dis-

tribution (fluctuation) of the strain field εmD(y) along the microscopic RVE

domain y ∈ V (fig. 6). In fact, the macroscopic strains are obtained from the

microscopic strain distributions in the RVE as stated in equation (1). The

problem is established macroscopically, leading to an optimization problem

that must be constrained to the equilibrium and compatibility (macroscopic)

equations. This may be written as follows:

min(σM ,εM ,σM
D ∈D,ε

M
D (εmD )∈D)

{
1
s
d2(σM ,σMD ) + 1

ε
d2(εM , εMD (εmD))

}
s.t.

∇ · σM = 0

εM = 1
2

(
∇uM +∇TuM

)
σM · nM = tM in Γt

uM = ūM in Γu

(4)

with uM the macroscopic displacement field, s and ε representative values of

the stress and strain ranges in the test data, respectively. tM are the pre-

scribed values of the macroscopic traction field at the Neumann boundary Γt,
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associated to the normal vector nM , while ūM are the prescribed macroscopic

values of the displacement field at the Dirichlet boundary Γu. d is the metric

defining the distance of the pair at hand from the dataset. This metric was

defined as the Euclidean distance,

d(x,xD) =

√∑
i

(xi − xi,D)2 (5)

Substitution of Eq. (5) into (4) yields,

min(σM ,εM ,σM
D ∈D,ε

M
D (εmD )∈D)

{
1
s

∥∥σM − σMD ∥∥2 + 1
ε

∥∥εM − εMD (εmD)
∥∥2}

s.t.

∇ · σM = 0

εM = 1
2

(
∇uM +∇TuM

)
σM · nM = tM in Γt

uM = ūM in Γu

(6)

Using the finite element (FE) discretization procedure over a single ele-

ment, Eq. (6) yields,

min(
σ(e),M ,ε(e),M ,σ

(e),M
D ∈D,ε(e),MD (εmD )∈D

) {1
s

∥∥∥σ(e),M − σ(e),M
D

∥∥∥2 + 1
ε

∥∥∥ε(e),M − ε(e),MD (εmD)
∥∥∥2}

s.t.

ε(e),M = B(e) · u(e),M∑
k wk ·B

(e),T
k · σ(e),M

k = F(e),M

(7)

where B(e) is the shape functions gradient matrix and F(e),M the vector of

macroscopic forces which accounts for the body and boundary forces. Sub-

script (e) denotes the discretized variables defined over an element. On the
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other hand, wk are the corresponding weights of the integration (Gauss)

points defined over the element.

The first compatibility (discretized) constraint in (7) can be directly sub-

stituted back in the objective function. On the other hand, the second FE

discretized constraint can be included via a Lagrange multiplier, finally re-

sulting in the following expression:

min(
σ(e),M ,ε(e),M ,σ

(e),M
D ∈D,ε(e),MD (εmD )∈D

) {1
s

∥∥∥σ(e),M − σ(e),M
D

∥∥∥2 + 1
ε

∥∥∥B(e) · u(e),M − ε(e),MD (εmD)
∥∥∥2 +

+
(∑

k wk ·B
(e),T
k · σ(e),M

k − F(e),M
)
· η(e),M

} (8)

with η(e),M being the discretized Lagrange multiplier defined over the element

(e) of the macrostructure. Taking variations in (8), we get:

δu(e),M = 0 → 1

ε

(
B(e) · u(e),M − ε(e),MD (εmD)

)
= 0 (9a)

δσ(e),M = 0 → 1

s

(
σ(e),M − σ(e),M

D

)
+ B(e) · η(e),M = 0 (9b)

δη(e),M = 0 →
∑
k

wk ·B(e),T
k · σ(e),M

k − F(e),M = 0 (9c)

After some algebraic manipulation of (9b) and substitution of (9c) in (9b)

we obtain,

∑
k wk ·B

(e),T
k ·B(e)

k · u(e),M =
∑

k wk ·B
(e),T
k · ε(e),MD,k (εmD)∑

k wk ·B
(e),T
k · s ·B(e)

k · η(e),M =
∑

k wk ·B
(e),T
k · σ(e),M

D,k − F(e),M
(10)

Eq. (10) is then integrated over all finite elements of the mesh. Hence,

ANel
e=1

(∑
k wk ·B

(e),T
k ·B(e)

k

)
· uM = ANel

e=1

(∑
k wk ·B

(e),T
k · ε(e),MD,k (εmD)

)
ANel
e=1

(∑
k wk ·B

(e),T
k · s ·B(e)

k

)
· ηM = ANel

e=1

(∑
k wk ·B

(e),T
k · σ(e),M

D,k

)
− FM

(11)
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where A is the FE assembly operator and Nel the number of elements of the

FE mesh. Note that FM refers to the global macroscopic force vector after

assembly. The algorithmic implementation of the set of Eqs. (11) follows the

scheme presented by [5], but here for multidimensional stress-strain pairs.

The numerical implementation of the algorithm was performed in Matlab.

The selection of the stress-strain pairs in the dataset is divided into normal

and shear components. Assuming orthotropic symmetries in the bone ma-

terial along the longitudinal and transversal directions, normal components

of the pairs (σM , εM) are selected from the dataset (with independence on

the values of shear compornents) as the closest distance to (σM , εM)D (fol-

lowing the Eulerian norm in (5)) using the Matlab function knnsearch. The

corresponding shear stress and strain components are computed indirectly

through principal components as follows:

εMαβ = Qαi ·Qβj · εMij (12a)

σMαβ = Qαi ·Qβj · σMij (12b)

with Qαi the principal directions of the strain tensor εij. Indices i, j are

referred to L, T (longitudinal and transversal) directions, and α, β to I, II

principal directions. Then, the closest point of the dataset (σMI , σ
M
II ; εMI , ε

M
II )D

to (σMI , σ
M
II ; εMI , ε

M
II ) is obtained using the knnsearch function. Finally, the

stress and strain shear components are recovered as follows:

εMLT = QLα ·QTβ · (εMαβ)D (13a)

σMLT = QLα ·QTβ · (σMαβ)D (13b)
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Note that obtaining the stress and strain shear components as explained

above is equivalent to assume isotropy to obtain the shear compoenents. We

remark that we use Eqs. (13) only to compute the shear components of the

stress and strain tensors but not the normal components.

3. Results

3.1. Experimental results

Fig. 7 shows the mean values of the longitudinal and transversal strains

obtained for different applied loads. It may be observed that the minimum

longitudinal strain is reached for the maximum longitudinal compression (LF

=-1500 N) and the minimum transversal compression (TF = 0 N), since the

latter increases the longitudinal strain due to Poisson effect. An opposite

trend may be observed in the case of the transversal strain, whose mini-

mum values are obtained for the minimum longitudinal compression (LF =

0 N) and the maximum transversal compression (TF = 600 N). Using a

standard orthotropic finite element model of the experimental setup, it was

corroborated that macroscopic stress and strain fields were uniform across

the ROI. Indeed, we concluded that the stress can be estimated in the ROI

as the applied force over the compressive surface. Assuming linear elasticity

and looking at the longitudinal strain and force, it is possible to estimate

an elastic modulus of the tested cortical bone sample by dividing the max-

imum applied longitudinal stress, 18.75 MPa (compression area 4×20 mm)

by the maximum longitudinal strain, around 0.1%. The obtained estimation

of 18.75 GPa is within the order of magnitude of the values published in

previous studies for cortical bone [31].
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Figure 7: Macroscopic load states applied over the sample and mean obtained values for

longitudinal (εML ) and transversal (εMT ) strains.

Each of the macroscopic load states represented in fig. 7 provides a

dataset of 192 × 176 points, with the associated microscopic strain field.

It is used as an input multiscale dataset of the computational analysis. As

an example, the microscopic strain fields for the experimental macroscopic

load states, as detailed in table 1, are represented in figs. 8 and 9.

3.2. Completion of the dataset

The results regarding the measured dataset, both macroscopic and micro-

scopic data, are expanded by means of the mathematical approach presented

in section 2.2.1 (see [9]). The macroscopic upsampled data are presented

in fig. 10 using a sampling size of n = 100 × 100 and a spread parameter

(force) ζ = 80 N. The upsampled macroscopic dataset is presented over the
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(1) (2) 

(3) (4) 

Figure 8: Experimentally obtained microscopic longitudinal strain fields (εmL ) for the ex-

perimental macroscopic load states detailed in table 1 (1, 2, 3 and 4).

25



(1) (2) 

(3) (4) 

Figure 9: Experimentally obtained microscopic transversal strain fields (εmT ) for the ex-

perimental macroscopic load states detailed in table 1 (1, 2, 3 and 4).
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Table 1: Four different macroscopic load states. Macroscopic longitudinal and transversal

forces (LF and TF) and mean (macroscopic) values for longitudinal and transversal strains

(εML and εMT ) of the experimental selected states to represent associated microscopic strain

fields in figs. 8 and 9 are listed.

Load state 1 2 3 4

LF (N) -84.31 -56.39 -613.628 -664.8

TF (N) -1.31 -554.4 -0.1781 -509.4

Mean εML (%) -0.0059 0.019 -0.0416 -0.018

Mean εMT (%) 0.0032 -0.0404 0.0181 -0.0196

measured macroscopic dataset showing a good agreement between measured

and synthetic (upsampled) data.

Figure 10: Macroscopic dataset. Surface: upsampled macroscopic dataset. Cross points:

measured macroscopic dataset.

On the other hand, the associated microscopic dataset is also upsampled
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together with their corresponding upsampled macroscopic dataset (see sec-

tion 2.2.1). In this case, figs. 11 and 12 show the estimated longitudinal and

transversal microscopic strain fields, respectively, along the RVE that are

associated to a certain macroscopic strain state. The same figures show the

three corresponding and closest measured microscopic strain fields associated

with the specified macroscopic strain state.

Figure 11: Estimated microscopic longitudinal strain field in the RVE and three closest

measured microscopic longitudinal strain field in the dataset, associated to the specified

macroscopic strain state εML = −2.0 · 10−4, εMT = −2.0 · 10−4.
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Figure 12: Estimated microscopic transversal strain field in the RVE and three closest

measured microscopic transversal strain fields in the dataset, associated to the specified

macroscopic strain state εML = −2.0 · 10−4, εMT = −2.0 · 10−4.
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Moreover, in order to test the performance of the dataset, the following

validation test was established: We removed 4 random points of the dataset

and used the data completion algorithm to reconstruct the microscopic strain

fields for those points. The comparison of these points versus the real ones

measured by means of DIC is given in figs. 13 and 14 for 2 removed points (al-

though conclusions are extended for the remaining 2 points). Qualitatively,

a good agreement can be observed in these figures for the microscopic fields.

Moreover, the mean (macroscopic) values of the strains is exactly the same

for both real and estimated, since the query strain field in the algorithm

is constrained to fulfill the mean input value according to Eq. (3). Since

the micromechanical fields in the RVE have to be interpreted statistically

and in average terms [41], we consider that the approach given by the data

completion algorithm is accurate enough.

3.3. Computational macroscopic DD results

The multiscale DD approach developed in previous sections is employed

here in an example of application. The example consists of a biaxially loaded

plate with an elliptical inclusion oriented along a 45o axis (see fig. 15). The

selected example of application fulfills the length-scale separation hypothesis

for multiscale analysis, since the order of magnitude of the heterogeneity

considered in the microscale (57 µm according to the experimental setup in

section 2.1) is quite below the order of magnitude of the characteristic scale

of cms of bone tissue (and the selected example). The problem is then a 2D

plane stress situation since it is conditioned to the availability of data, which

in our case is restricted to 2D biaxial tests. The plate is subjected both to

longitudinal and transversal compression stresses LF= 5.2 MPa and TF= 2.6
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Figure 13: Estimated (reconstructed) microscopic strain fields, by means of the data

completion technique, versus real ones measured by means of DIC. Randomly selected

macroscopic strain state (εMT,D, εML,D) indicated in the figure.
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Figure 14: Estimated (reconstructed) microscopic strain fields, by means of the data

completion technique, versus real ones measured by means of DIC. Randomly selected

macroscopic strain state (εMT,D, εML,D) indicated in the figure.
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MPa, respectively, and to prescribed normal displacements as described in

fig. 15. The FE mesh was composed of 1240 triangular linear elements.

The used upsampled dataset micro-macro dataset includes n = 500 × 500

longitudinal and transversal points. The values s and ε in Eq. (4) are selected

as the experimental range of stress and strain in the dataset, respectively. We

obtained (data not shown) that different selected values (although keeping

the same order of magnitude) converged to the same results.

The macroscopic longitudinal and transversal components of the displace-

ment field are shown in figure 16. Moreover, the macroscopic longitudinal

and transversal components of the strain and stress tensors are shown in figs.

17 and 18, respectively.

3.4. Computational multiscale DD results

Multiscale results are presented along the microstructure, i.e. RVE, at

three selected points in the macroscale. The distribution of the microscopic

strain field in the RVE represents the fluctuation of the strain field as a

consequence of the heterogeneity of the domain at this scale. Figs. 19, 20 and

21 show three points in the macroscale with the associated macroscopic strain

fields and their underlying microstructural distribution of the corresponding

strain fields in the RVE.

4. Discussion

We may set the beginning of the application of DD techniques to contin-

uum mechanics just a few years ago [5]. Since then, several papers have fol-

lowed this research direction. Even though DD needs experimental datasets

as input, most of the works use synthetically generated artificial data. This
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Figure 15: Example of application for multiscale DD simulations.
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Figure 16: Macroscopic displacement field [m] of the example of application shown in

fig. 15. Left: macroscopic longitudinal displacement. Right: macroscopic transversal

displacement.
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Figure 17: Macroscopic strain field [–] of the example of application shown in fig. 15. Left:

macroscopic longitudinal strain. Right: macroscopic transversal strain.

Figure 18: Macroscopic stress field [MPa] of the example of application shown in fig. 15.

Left: macroscopic longitudinal stress. Right: macroscopic transversal stress.
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Macro 

Micro 

Figure 19: Multiscale DD results. Top: Macroscopic strain field [–] of the example of ap-

plication shown in fig. 15. Bottom: Microscopic strain field in the RVE for the highlighted

point of the macroscale. Left: longitudinal strain component. Right: transversal strain

component.
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Macro 

Micro 

Figure 20: Multiscale DD results. Top: Macroscopic strain field [–] of the example of ap-

plication shown in fig. 15. Bottom: Microscopic strain field in the RVE for the highlighted

point of the macroscale. Left: longitudinal strain component. Right: transversal strain

component.
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Macro 

Micro 

Figure 21: Multiscale DD results. Top: Macroscopic strain field [–] of the example of ap-

plication shown in fig. 15. Bottom: Microscopic strain field in the RVE for the highlighted

point of the macroscale. Left: longitudinal strain component. Right: transversal strain

component.
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strategy neglects important problems and limitations that the DD method-

ology has to face when dealing with experimental setups in realistic applica-

tions. We are referring to these limitations below in this section.

The present work uses a real experimental set of data at multiple scales

to characterize a piece of cortical bone tissue, a material with a high in-

terest in the biomedical community. The mechanical characterization was

performed by means of the DIC technique similar to other works in this

context [32, 33, 35]. The conducted experimental setup allowed obtaining

information both at the micro- and macro-scales in a multiscale fashion. Ac-

cording to figs. 8 and 9, the fluctuation of the microscopic strain fields as

a consequence of the heterogeneity at this scale –due to the porous internal

architectures with heterogeneous mineral content (see fig. 5a)– justifies a

multiscale approach of the cortical bone tissue. The multiscale dataset was

then expanded (upsampled) following a previous approach proposed by the

authors [9]. This upsampling procedure is often necessary in real situations

since the resolution of the experimental stress or strain driven setups may be

coarser than the one required to get an adequate resolution in DD simulations

[42].

The proposed multiscale DD approach was tested in a 2D plane stress

geometry. It must be clearly remarked that DD simulations are inherently

linked to the availability of data. Since the experimental characterization was

established in a 2D setup (biaxially loaded states), simulations are therefore

restricted to 2D cases. Note that, in general terms, 3D mechanical charac-

terization is not straightforward. This fact can be identified as a limitation

in the DD methodology, directly derived from our current experimental ca-
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pability. The macroscopic strain and stress fields, shown in figs. 17 and 18,

respectively, provide an unexpected non-smooth solution versus a smooth

one which could be achieved using a classical model-based linear orthotropic

approach for the constitutive response of the cortical bone tissue [43, 44, 45].

This observed behavior is a direct consequence of the measured non-smooth

pattern in the dataset (Fig. 10). Therefore, we hypothesize that this non-

smooth characteristic is a result of the microstructural heterogeneity of the

material in hands. This hypothesis is enforced by the presence of the inter-

nal microstructure and fluctuation of the field variables, as presented in Figs.

19, 20 and 21. This kind of macroscopic non-smooth pattern for strain and

stress fields is typical of multiscale simulations which consider the internal

evolution of the microstructure as can be seen in Refs. [23, 46, 47], amongst

others. Moreover, these non-smooth patterns suggest that DD approaches

are useful and give value at certain preassumed scenarios, or a priori well-

known behaviors such as the linear orthotropic model-based approach of the

bone tissue. Even though the substitution of well-accepted constitutive laws

by data may be considered a waste of knowledge [48], we have demonstrated

in this work that this is not the case for the cortical bone tissue.

Multiscale results give access to the microscopic strain distribution in

the RVE. Figs. 19, 20 and 21 show that the peak fluctuations of the strain

fields in the finer (microscopic) scale is an order of magnitude higher than

the averaged (homogenized) strain fields. Since many of the physiological

processes in the bone tissue are microstructural and local, including microc-

racking, bone fracture, and bone microarchitectural disorders (as menopause

disease); information of this mechanical variable at the microscopic level is
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then considered as critical when analyzing the referred phenomena by math-

ematical models. Moreover, it has been proposed that microstrains are the

driving force in many remodelling theories [17, 19, 49]. Therefore, this mul-

tiscale approach may be useful to quantify mechanical variables at this level.

Indeed, the presented multiscale DD approach may be seen as a remedy to

intractable large size multiscale FE2 methods, since the solution at the mi-

croscale is obtained as a post-process step. The appendix discusses about

the computational cost of the present method versus multiscale techniques.

Microstrains are given both at the micro- and macro scales as exposed in

this paper. Additionally, macroscopic stresses are also available by assuming

a uniform distribution along the region of interest of the specimen. However,

there is no (standard or commercial) protocol or technique to directly mea-

sure microstresses along the microstructure since, in general terms, stresses

are not a measurable quantity being this a clear limitation of the DD method-

ology. Indirectly, microstresses may be obtained through the definition of a

certain constitutive model of the different microconstituents and their inter-

action in the microstructure, leading to a hybrid model-based / model-free

approach in the microstructure. A recent DD work has been presented in

this context able to infer (microscopic) stress fields from field measurements

(DIC) and associated boundary conditions (loads), without any assumption

on a specific constitutive model [50].

5. Conclusions

The present paper shows for the first time, as far as the authors’ knowl-

edge, results at two scales for the cortical bone tissue following a multiscale
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implementation of the DD methodology in elasticity. Several interesting con-

clusions can be stated:

1. Macroscopic stress and strain fields result into non-smooth patterns,

contrary to the expected model-based smooth solutions that use a linear

orthotropic description of the cortical bone tissue. Therefore, some

pre-conceived well-known material models may be improved by a DD

implementation.

2. The proposed multiscale DD implementation may be additionally un-

derstood as a solution to intractable large size multiscale FE2 compu-

tational approaches.

3. Serious limitations have been evidenced regarding the measurement of

stress states, which is fundamental in DD methodology and limits its

applicability. These limitations are not visible in papers that deal with

sinthetically generated datasets.

As a final conclusion, the present work can be useful to further investigate

the biomechanical behavior of the cortical bone tissue and the implication

of multiple scales coupling the function of bone tissue both at healthy and

pathologic conditions.
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Appendix: Computational cost estimation of the presented mul-

tiscale DD methodology and comparison to standard FEM2 algo-

rithms

In the presented DD multiscale study, the computation of the microscopic

fields is carried out as a post-process as discussed in the paper. Therefore,

the computational cost of our study is one of the DD techniques. Next, we

discuss the computational cost of a DD technique versus a multiscale one in

a generic framework.

The DD algorithm turns into an iterative solver solution as exposed in

Kirchdoerfer and Ortiz [5]. The cost of each iteration is one of a FEM solver

for a single load state. Hence, the DD computational cost is the following:

DD ∼ $(ND) ·O(N) ·Niters (14)

O(N) is the computational cost of a FEM iteration and N is the size of

the FEM macroscopic mesh. $(ND) · O(N) is the computational cost of a

FEM iteration corrected by the searching algorithm of the dataset at each

iterations. This cost is dependent on the size of the dataset ND. In our

case, $ has been estimated in 2 for a computer with core processor i7 @3.4

GHz and RAM 32 GB and using the Matlab searching algorithm knnsearch.

Niters is the number of iterations which is of the order of 100-1000 in a DD

approach [7].

On the other hand, the cost of a FE2 (generic nonlinear) multiscale (MS)

approach is [24],

MS ∼ NLiters · nliters ·NG ·O(n) (15)
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where NG is the Gauss points of the macroscopic mesh. NLiters and nliters

are the macroscopic and microscopic nonlinear iterations (Newton-Raphson

for example). O(n) is the computational cost of a FEM iteration and n is the

size of the FEM microscopic mesh. Therefore, the comnputational cost of the

proposed DD multiscale method is competitive versus multiscale numerical

schemes if

NLiters · nliters ·NG ·O(n) >> $(ND) ·O(N) ·Niters (16)

In terms of order of magnitude NG ∼ N , NLiters ∼ 10, nliters ∼ 10, Niters ∼

2000 in a conservative case scenario. Then Eq. (16) yields,

N ·O(n) >> 20 ·O(N) (17)

Moreover, assuming that the macro and micro meshes n and N are com-

parable in a conservative case (in fact the microstructure mesh is usually

more detailed in a multiscale approach), Eq. (17) yields:

N >> 20 (18)

Eq. (18) is usually satisfied.
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