Mostrar el registro sencillo del ítem

Artículo

dc.creatorJin, W.es
dc.creatorPastor Pérez, Lauraes
dc.creatorYu, Jiees
dc.creatorOdriozola Gordón, José Antonioes
dc.creatorGu, S.es
dc.creatorRamírez Reina, Tomáses
dc.date.accessioned2023-09-19T08:10:28Z
dc.date.available2023-09-19T08:10:28Z
dc.date.issued2020-06
dc.identifier.citationJin, W., Pastor Pérez, L., Yu, J., Odriozola Gordón, J.A., Gu, S. y Ramírez Reina, T. (2020). Cost-effective routes for catalytic biomass upgrading. Current Opinion in Green and Sustainable Chemistry, 23, 1-9. https://doi.org/10.1016/j.cogsc.2019.12.008.
dc.identifier.issn2452-2236es
dc.identifier.urihttps://hdl.handle.net/11441/148993
dc.description.abstractCatalytic hydrodeoxygenation (HDO) is a fundamental and promising route for bio-oil upgrading to produce petroleum-like hydrocarbon fuels or chemical building blocks. One of the main challenges of this technology is the demand of high-pressure H2, which poses high costs and safety concerns. Accordingly, developing cost-effective routes for biomass or bio-oil upgrading without the supply of commercial H2 is essential to implement the HDO at commercial scale. This article critically reviewed the very recent studies relating to the novel strategies for upgrading the biofeedstocks with ‘green’ H2 generated from renewable sources. More precisely, catalytic transfer hydrogenation/hydrogenolysis, combined reforming and HDO, combined metal hydrolysis and HDO, water-assisted in-situ HDO and nonthermal plasma technology and self-supported hydrogenolysis are reviewed herein. Current challenges and research trends of each strategy are also proposed aiming to motivate further improvement of these novel routes to become competitive alternatives to conventional HDO technology. © 2020 Elsevier B.V.es
dc.description.sponsorshipDepartment of Chemical and Process Engineering. University of Surrey EP/J020184/2, EP/R512904/1es
dc.description.sponsorshipEngineering and Physical Sciences Research Council (UK) EP/J020184/2, EP/R512904/1es
dc.description.sponsorshipRoyal Society Research (UK) RSGR1180353es
dc.formatapplication/pdfes
dc.format.extent9 p.es
dc.language.isoenges
dc.publisherElsevier B.V.es
dc.relation.ispartofCurrent Opinion in Green and Sustainable Chemistry, 23, 1-9.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCatalytic reforminges
dc.subjectCost effectivenesses
dc.subjectBio-oilses
dc.subjectBiomass oiles
dc.subjectChemical building blockses
dc.subjectHigh pressurees
dc.subjectHigh safetyes
dc.subjectHydrocarbon fueles
dc.subjectHydrodeoxygenationes
dc.subjectSafety concernses
dc.subjectHydrolysises
dc.titleCost-effective routes for catalytic biomass upgradinges
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Química Inorgánicaes
dc.relation.projectIDEP/J020184/2es
dc.relation.projectIDEP/R512904/1es
dc.relation.projectIDRSGR1180353es
dc.relation.publisherversionhttps://doi.org/10.1016/j.cogsc.2019.12.008es
dc.identifier.doi10.1016/j.cogsc.2019.12.008es
dc.journaltitleCurrent Opinion in Green and Sustainable Chemistryes
dc.publication.volumen23es
dc.publication.initialPage1es
dc.publication.endPage9es
dc.contributor.funderDepartment of Chemical and Process Engineering. University of Surreyes
dc.contributor.funderEngineering and Physical Sciences Research Council (UK)es
dc.contributor.funderRoyal Society Research (UK)es

FicherosTamañoFormatoVerDescripción
post print probl.pdf545.6KbIcon   [PDF] Ver/Abrir   Artículo

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional