Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Ponencia
Light guidance control of human drivers: driver modeling, control system design, and VR experiment
Autor/es | Takeda, Minato
Inoue, Masaki Fang, X. Minami, Y. Maestre Torreblanca, José María |
Departamento | Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática |
Fecha de publicación | 2022 |
Fecha de depósito | 2023-08-22 |
Publicado en |
|
ISBN/ISSN | 2405-8963 |
Resumen | This paper addresses light guidance control for human-driven vehicles. We manipulate pace-making-light (PML) installed in the road environment to make drivers accelerate their vehicles unconsciously. Also, since the ... This paper addresses light guidance control for human-driven vehicles. We manipulate pace-making-light (PML) installed in the road environment to make drivers accelerate their vehicles unconsciously. Also, since the performance of the control system relies on the human reaction, we address the modeling of the driver's behavior guided by PML. To this end, we tested human subjects by using a driving simulator developed in a virtual reality environment. The collected data were used to model the driver's behavior and to perform a PML control simulation. In particular, the driver model is utilized for the design of a model predictive controller that is implemented as the PML logic. |
Agencias financiadoras | Sociedad Japonesa para la Promoción de la Ciencia Ministerio de Ciencia e Innovación (MICIN). España Agencia Estatal de Investigación. España |
Identificador del proyecto | 20H04473
10.13039/501100011033 PID2020-119476RB-I00 |
Cita | Takeda, M., Inoue, M., Fang, X., Minami, Y. y Maestre Torreblanca, J.M. (2022). Light guidance control of human drivers: driver modeling, control system design, and VR experiment. En 4th IFAC Workshop on Cyber-Physical and Human Systems, CPHS 2022, IFAC-PapersOnLine, 55 (41) (32-37). |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
IFACPoL_2022_Takeda_Light_OA.pdf | 797.4Kb | [PDF] | Ver/ | |