Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions
Autor/es | Lefèvre, Pascal
Li, Daniel Queffélec, Hervé Rodríguez Piazza, Luis |
Departamento | Universidad de Sevilla. Departamento de Análisis Matemático |
Fecha de publicación | 2021 |
Fecha de depósito | 2023-04-14 |
Publicado en |
|
Resumen | We compare the rate of decay of singular numbers of a
given composition operator acting on various Hilbert spaces
of analytic functions on the unit disk D. We show that for the
Hardy and Bergman spaces, our results are ... We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk D. We show that for the Hardy and Bergman spaces, our results are sharp. We also give lower and upper estimates of the singular numbers of the composition operator with symbol the “cusp map” and the lens maps, acting on weighted Dirichlet spaces. |
Cita | Lefèvre, P., Li, D., Queffélec, H. y Rodríguez Piazza, L. (2021). Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions. Journal of Functional Analysis, 280, 1-47. https://doi.org/10.1016/j.jfa.2020.108834. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
1-s2.0-S0022123620303773-main.pdf | 648.8Kb | [PDF] | Ver/ | |