Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Trabajo Fin de Grado
Métodos de optimización convexa para resolver problemas en aprendizaje automático
Autor/es | Carmona Carrasco, Mateo |
Director | Martín Márquez, Victoria |
Departamento | Universidad de Sevilla. Departamento de Análisis matemático |
Fecha de publicación | 2021-09-15 |
Fecha de depósito | 2022-06-20 |
Titulación | Universidad de Sevilla. Grado en Matemáticas |
Resumen | Nowadays, the learning methods developed to solve optimization problems turn out
to have strange behavior when we work analyzing data of a large dimension, mainly
developed in a statistical context. Many of these methods ... Nowadays, the learning methods developed to solve optimization problems turn out to have strange behavior when we work analyzing data of a large dimension, mainly developed in a statistical context. Many of these methods have become computationally hard and slow. Right, the bene ts of methods optimization only come when the problem is kwnown ahead of time to be convex. Methods, such as gradient descent or geometric descent, are capable of dealing with these problems e ciently, thus obtaining great results. Throughout this work, we will also expose and develop other methods derived from machine learning, thus concluding with the bootstrap model, which has now became relevant. |
Cita | Carmona Carrasco, M. (2021). Métodos de optimización convexa para resolver problemas en aprendizaje automático. (Trabajo Fin de Grado Inédito). Universidad de Sevilla, Sevilla. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
GM CARMONA CARRASCO, MATEO.pdf | 1.452Mb | [PDF] | Ver/ | |