Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Statistically Representative Metrology of Nanoparticles via Unsupervised Machine Learning of TEM Images
Autor/es | Wen, Haotian
Luna Romera, José María Riquelme Santos, José Cristóbal Dwyer, Christian Chang, Shery L.-Y |
Departamento | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos |
Fecha de publicación | 2021 |
Fecha de depósito | 2022-04-13 |
Publicado en |
|
Resumen | The morphology of nanoparticles governs their properties for a range of important applica tions. Thus, the ability to statistically correlate this key particle performance parameter is paramount
in achieving accurate ... The morphology of nanoparticles governs their properties for a range of important applica tions. Thus, the ability to statistically correlate this key particle performance parameter is paramount in achieving accurate control of nanoparticle properties. Among several effective techniques for morphological characterization of nanoparticles, transmission electron microscopy (TEM) can pro vide a direct, accurate characterization of the details of nanoparticle structures and morphology at atomic resolution. However, manually analyzing a large number of TEM images is laborious. In this work, we demonstrate an efficient, robust and highly automated unsupervised machine learning method for the metrology of nanoparticle systems based on TEM images. Our method not only can achieve statistically significant analysis, but it is also robust against variable image quality, imaging modalities, and particle dispersions. The ability to efficiently gain statistically significant particle metrology is critical in advancing precise particle synthesis and accurate property control. |
Agencias financiadoras | Australia Research Council (ARC) Ministerio de Economía y Competitividad (MINECO). España |
Identificador del proyecto | IC210100056
TIN2014-55894-C2-R TIN2017-88209-C2-2-R |
Cita | Wen, H., Luna Romera, J.M., Riquelme Santos, J.C., Dwyer, C. y Chang, S.L.-. (2021). Statistically Representative Metrology of Nanoparticles via Unsupervised Machine Learning of TEM Images. Nanomaterials, 11 (10) |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Statistically Representative ... | 12.36Mb | [PDF] | Ver/ | |