Show simple item record

Article

dc.creatorGuerrero Alonso, Juan Ignacioes
dc.creatorMonedero Goicoechea, Iñigo Luises
dc.creatorBiscarri Triviño, Félixes
dc.creatorBiscarri Triviño, Jesúses
dc.creatorMillán, Rocíoes
dc.creatorLeón de Mora, Carloses
dc.date.accessioned2022-03-23T10:31:04Z
dc.date.available2022-03-23T10:31:04Z
dc.date.issued2018
dc.identifier.citationGuerrero Alonso, J.I., Monedero Goicoechea, I.L., Biscarri Triviño, F., Biscarri Triviño, J., Millán, R. y León de Mora, C. (2018). Non-Technical Losses Reduction by Improving the Inspections Accuracy in a Power Utility. IEEE Transactions on Power Systems, 33 (2), 1209-1218.
dc.identifier.issn0885-8950es
dc.identifier.urihttps://hdl.handle.net/11441/131173
dc.description.abstractThe Endesa Company is the main power utility in Spain. One of the main concerns of power distribution companies is energy loss, both technical and non-technical. A non-technical loss (NTL) in power utilities is defined as any consumed energy or service that is not billed by some type of anomaly. The NTL reduction in Endesa is based on the detection and inspection of the customers that have null consumption during a certain period. The problem with this methodology is the low rate of success of these inspections. This paper presents a framework and methodology, developed as two coordinated modules, that improves this type of inspection. The first module is based on a customer filtering based on text mining and a complementary artificial neural network. The second module, developed from a data mining process, contains a Classification & Regression tree and a Self-Organizing Map neural network. With these modules, the success of the inspections is multiplied by 3. The proposed framework was developed as part of a collaboration project with Endesa.es
dc.description.sponsorshipMinisterio de Economía y Competitividad TEC2013-40767-Res
dc.formatapplication/pdfes
dc.format.extent10es
dc.language.isoenges
dc.publisherIEEE Computer Societyes
dc.relation.ispartofIEEE Transactions on Power Systems, 33 (2), 1209-1218.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData mininges
dc.subjectDecision treees
dc.subjectNeural networkes
dc.subjectNon-technical losseses
dc.subjectPower utilityes
dc.subjectText mininges
dc.titleNon-Technical Losses Reduction by Improving the Inspections Accuracy in a Power Utilityes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Tecnología Electrónicaes
dc.relation.projectIDTEC2013-40767-Res
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/7962285es
dc.identifier.doi10.1109/TPWRS.2017.2721435es
dc.journaltitleIEEE Transactions on Power Systemses
dc.publication.volumen33es
dc.publication.issue2es
dc.publication.initialPage1209es
dc.publication.endPage1218es
dc.identifier.sisius21342045es
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). Españaes

FilesSizeFormatViewDescription
Non-Technical_Losses_Reduction ...1.757MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional