Article
Real-time detection of bursts in neuronal cultures using a Neuromorphic Auditory Sensor and Spiking Neural Networks
Author/s | Domínguez Morales, Juan Pedro
![]() ![]() ![]() ![]() ![]() ![]() ![]() Buccelli, Stefano Gutiérrez Galán, Daniel Colombi, Ilaria Jiménez Fernández, Ángel Francisco ![]() ![]() ![]() ![]() ![]() ![]() ![]() Chiappalone, Michela |
Department | Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores |
Date | 2021-08 |
Published in |
|
Abstract | The correct identi cation of burst events is crucial in many scenarios,
ranging from basic neuroscience to biomedical applications. However, none
of the burst detection methods that can be found in the literature have ... The correct identi cation of burst events is crucial in many scenarios, ranging from basic neuroscience to biomedical applications. However, none of the burst detection methods that can be found in the literature have been widely adopted for this task. As an alternative to conventional techniques, a novel neuromorphic approach for real-time burst detection is proposed and tested on acquisitions from in vitro cultures. The system consists of a Neuromorphic Auditory Sensor, which converts the input signal obtained from electrophysiological recordings into spikes and decomposes them into di erent frequency bands. The output of the sensor is sent to a trained spiking neural network implemented on a SpiNNaker board that discerns between bursting and non-bursting activity. This data-driven approach was compared with 8 di erent conventional spike-based methods, addressing some of their drawbacks, such as being able to detect both high and low frequency events and working in an online manner. Similar results in terms of number of detected events, mean burst duration and correlation as current state-ofthe- art approaches were obtained with the proposed system, also bene ting from its lower power consumption and computational latency. Therefore, our neuromorphic-based burst detection paves the road to future implementations for neuroprosthetic applications. |
Project ID. | TEC2016-77785-P
![]() |
Citation | Domínguez Morales, J.P., Buccelli, S., Gutiérrez Galán, D., Colombi, I., Jiménez Fernández, Á.F. y Chiappalone, M. (2021). Real-time detection of bursts in neuronal cultures using a Neuromorphic Auditory Sensor and Spiking Neural Networks. Neurocomputing, 449, 422-434. |
Files | Size | Format | View | Description |
---|---|---|---|---|
N_dominguez-morales_2021_real- ... | 2.201Mb | ![]() | View/ | |