Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Ponencia
Incremental Learning For Fundus Image Segmentation
Autor/es | Civit Masot, Javier
Muñoz Saavedra, Luis Luna Perejón, Francisco Montes-Sánchez, Juan Manuel Domínguez Morales, Manuel Jesús |
Departamento | Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores |
Fecha de publicación | 2020-03-22 |
Fecha de depósito | 2021-06-02 |
Publicado en |
|
ISBN/ISSN | 978-1-61208-763-4 2308-4359 |
Resumen | Automated Fundus image segmentation is tradition-ally done in the image acquisition instrument and, thus, in thiscase it only needs to be able to segment data from this acquisitionsource. Cloud providers support multi GPU ... Automated Fundus image segmentation is tradition-ally done in the image acquisition instrument and, thus, in thiscase it only needs to be able to segment data from this acquisitionsource. Cloud providers support multi GPU and TPU virtualmachines making attractive the idea of cloud-based segmentationan interesting possibility. To implement this idea we need to makecorrect predictions for fundus coming from different sources.In this paper we study the possibility of building a web basesegmentation service using incremental training, i.e, we initiallytrain the system using data from a single data set and, afterwards,perform retraining with data from other acquisition sources. Weare able to show that this type of training is efficient and canprovide good results suitable for web-based segmentation. |
Cita | Civit Masot, J., Muñoz Saavedra, L., Luna Perejón, F., Montes-Sánchez, J.M. y Domínguez Morales, M.J. (2020). Incremental Learning For Fundus Image Segmentation. En eTELEMED 2020: The Twelfth International Conference on eHealth, Telemedicine, and Social Medicine (5-8), Valencia: IARIA XPS Press. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
etelemed_2020_1_20_48009.pdf | 2.493Mb | [PDF] | Ver/ | |
Este registro aparece en las siguientes colecciones
Este documento está protegido por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos, a menos que se indique lo contrario.