Capítulos (Ingeniería Electrónica)
URI permanente para esta colecciónhttps://hdl.handle.net/11441/11358
Examinar
Envíos recientes
Capítulo de Libro Impact of radiation on electronics and opto-electronics(CERN, 2021-04) Backhaus, M.; Bindi, M.; Butti, P.; Butz, E.; Chabert, E.; Chen, S.; Palomo Pinto, Rogelio; Universidad de Sevilla. Departamento de Ingeniería ElectrónicaIn this chapter we will present the results of the impact of radiation on electronics and opto-electronics for two of the LHC experiments during Run 1 and Run 2. ATLAS results are presented in Section 6.1; CMS in Section 6.2. In Section 6.3 we will present a comparison between the two experiments, highlighting operational guidelines and proposing solutions to build the electronics and opto-electronics of the future LHC experiments.Capítulo de Libro Achieving Energy Efficiency in Analogue and Mixed Signal Integrated Circuit Design(InTech, 2012-04) López Morillo, Enrique; Márquez Lasso, Fernando J.; Sánchez Rodríguez, T.; Luján Martínez, Clara Isabel; Muñoz Chavero, Fernando; Universidad de Sevilla. Departamento Ingeniería Electrónica; Spanish Ministry of Science and Technology and the Andalusian Regional Government under Project TEC2010-21563-C02-02; Spanish Ministry of Science and Technology and the Andalusian Regional Government under Project TIC-6323-2011; Universidad de Sevilla. TIC 192: Ingeniería ElectrónicaWireless communications are one of the major successes of the engineering over the past two decades. The progress made in this area has not only produced a huge technological growth, but also a great impact at social and economical level. In fact, the possibility of being connected anywhere at any time has radically changed people habits. The evolution of wireless communications is obviously linked to the power consumption of devices, which also continues increasing due to the growing amount of data and transmission speed required by the new communication standards. In contrast, the energy available in portable batteries does not grow at the same rate, improving only their capacity in a 10% every two years (Shahab, 2010). This leads to an increasingly gap between power needs and battery capacity. Therefore, energy efficiency of electronics systems has become a crucial factor to maximize the lifetime of the available batteries and one of the most important research topics in integrated circuits design in recent years. The increase in power consumption is less dramatic for the digital domain, since it is partially compensated, as the technology scales-down, by the reduction of the supply voltage and the geometrical dimensions of a single device. The main reason for decreasing the supply voltage in modern CMOS technology is to avoid the possible breakdown of the transistors due to the extremely thin oxide. For a CMOS logic gate, e.g. an inverter, the simplest logic cell, the power consumption can be expressed as: P = 𝐶˪ ⋅ Vdd2・ f where CL is the load capacitor at the output of the inverter, Vdd is the supply voltage and f is the operating frequency. Despite of the ever-increasing working speed, the power consumption in CMOS logic circuits is reduced as the supply voltage and geometry sizes scale down. For instance, the power consumption of microprocessors is reduced in a 50% for each technology generation if the supply voltage scales down in a 30% (Bokar, 1999) and according to Gene’s law, the power dissipation in embedded DSP processors will be decreased by a half every 18 months. As it will be explained later, this relative “low cost” of digital computation in terms of power dissipation, supports the idea of maximizing the digitization level of an electronic system not only to dismiss the fabrication costs but also as a way of reducing its power consumption. The System-On-Chip (SoC) trend is the main cause for the analogue and mixed-signal and digital integrated circuits (ICs) to be fabricated on the same wafer. This fact eventually requires the analogue and mixed-signal ICs to be fabricated in modern CMOS technologies to save cost. However, several challenges are encountered in the scaling-down of the CMOS technologies for analogue designs with not much clear advantages (Yao et al. 2006). The threshold voltage is not scaled as aggressively as the supply voltage to avoid leakage current in transistors. As a consequence, the available signal swing is lower and a reduction of the noise of the circuit to maintain the same dynamic range is required. Reducing thermal noise increases the power consumption of analogue and mixed-signal circuitry. Particularly, in discrete time applications, reducing circuit noise means increasing the capacitances which results in higher power consumption in order to maintain the same operation speed. Additionally, as technologies are scaled down, the output resistance of the MOS transistors decreases resulting in lower op-amp gain. In order to increase the gain, it is required to use either cascode transistors or cascade amplifiers, increasing the complexity of the circuits. These solutions worsen the swing problems and increase the power consumption. The analogue-to-digital (A/D) converter is one of the most important and power consuming building blocks in modern electronics systems. Moreover, A/D converter (ADC) requirements tend to be more stringent as the analogue functionality is moved to the digital domain. In recent years, the demand of more and more performance (speed and/or resolution) within a limited energy budget has pushed the IC research community to put a huge effort into increasing the energy efficiency of the ADCs. For instance, data collected from the literature over the last years indicate that the power efficiency of ADCs has improved by a factor of two every two years (Murmann, 2008), allowing some designs to become portable, such as those for biomedical applications. Due to this fact, a special attention to ADC architectures will be taken in some sections of this chapter, as they are the most limiting blocks in recent systems. In portable bio-signals acquisition micro-systems, the power consumption requirements are taken to the extreme. For instance, medical implant devices, such as modern pacemakers, require extremely low power consumption (about 10-40 μW) in order to operate up to 10 years or more using a small non-rechargeable battery (Yeknami et al., 2010). In wearable electronics for biomedical monitoring applications, extreme miniaturization is required and this will limit the battery size and power draw. Wearable electroencephalography (EEG) is a good example of such a power-limited system. EEG records the voltage between electrodes placed on the scalp and provides a non-invasive interface to the brain. Discrete, lightweight and comfortable devices are essential for user acceptance in applications such as epilepsy diagnosis (Casson & Rodriguez-Villegas, 2011). Long-term EEG monitoring of patients in their daily environment is generally required for epilepsy diagnosis. As these types of medical tests can take long periods of time, ultra-low power and miniaturized electronics systems need to be developed. Another interesting arising application is the Energy Autonomous Sensors (EAS) which will represent a revolution in the use of wireless technologies, such as wireless sensor networks, in the ambient intelligence paradigms. Exploiting this continuously improving energy efficiency and advances in energy harvesting, miniaturized battery-less sensors that do not need to be recharged for their whole operational life are becoming possible nowadays (Belleville et al. 2010). In the second section of the chapter, we give a summary on the most common techniques that have been used by the IC research community in the last years to reduce the power consumption in analogue and mixed signal circuits. Several references to relevant works where each technique is detailed are provided. The following four general categories have been considered to classify the presented techniques: * Biasing point optimization. * Digitally assisted techniques. * Analogue circuitry simplification. * Efficient use of biasing. The authors’ main contribution in this chapter is described in the third section. Some of the techniques commented on section two will be illustrated with some actual designs, a micropower channel filter for an Ultra Low Power Bluetooth (ULPBT) receiver and a compact continuous time (CT) Sigma Delta (ΣΔ) modulator for a sensor interface powered by a passive Radio Frequency Identification (RFID) front-end.Capítulo de Libro Realización de un libro electrónico multimedia sobre procesadores digitales de señal mediante Macromedia Director(Sevilla : Universidad de Sevilla, Instituto de Ciencias de la Educación, 2008) Toral, S. L.; Barrero, Federico; Gallardo Vázquez, Sergio; Martínez Torres, María del Rocío; Universidad de Sevilla. Departamento de Administración de Empresas y Comercialización e Investigación de Mercados (Marketing)Capítulo de Libro Diseño y realización de un entorno web de ayuda a la impartición de clases prácticas en una asignatura de 3er curso de la Titulación de Ingeniería de Telecomunicación, denominada "Complemento de sistemas electrónicos digitales"(Universidad de Sevilla, Instituto de Ciencias de la Educación, 2007) Barrero, Federico; Gallardo Vázquez, Sergio; Toral, S. L.; Martínez Torres, María del Rocío; Universidad de Sevilla. Departamento de Administración de Empresas y Comercialización e Investigación de Mercados (Marketing); Universidad de Sevilla. Departamento de Ingeniería ElectrónicaCapítulo de Libro Diseño de un entorno virtual de trabajo remoto basado en el modelado 3D de un laboratorio empleando VRML(Universidad de Sevilla, Instituto de Ciencias de la Educación, 2008) Gallardo Vázquez, Sergio; Barrero, Federico; Toral, S. L.; Martínez Torres, María del Rocío; Universidad de Sevilla. Departamento de Administración de Empresas y Comercialización e Investigación de Mercados (Marketing); Universidad de Sevilla. Departamento de Ingeniería ElectrónicaGracias al continuo desarrollo de las tecnologías de la infomación y la comunicación (TIC) es posible creer en el desarrollo de entornos virtuales en Internet. De hecho, puede observarse un ingente incremento de las líneas de investigación en sistemas de realidad virtual (RV) por parte de las más prestigiosas instituciones, universidades y empresas. En este trabajo, se describe un laboratorio virtual 3D como primer paso para desarrollar un importante sistema middleware para trabajar de forma colaborativa y cooperativa en Internet. En esta propuesta, el usuario interactúa con el mundo virtual, es decir, el puesto de trabajo virtual 3D. Se ha empleado el lenguaje VRML para crear el mundo virtual 3D y tecnologías multimedia para acceder a la descripción de la instrumentación. La programación basada en scripts también ha sido empleada para mejorar las características del sistema y la interfaz. Cualquier cliente puede acceder al laboratorio 3D usando un navegador Web con un plug-in VRML instaladoCapítulo de Libro Desarrollo de un nuevo sistema para la realización de clases prácticas en varias asignaturas adscritas al Departamento de Ingeniería Electrónica de la Titulación de Ingeniería de Telecomunicación(Universidad de Sevilla, Instituto de Ciencias de la Educación, 2008) Barrero, Federico; Cortés Martínez, Francisco Javier; Gallardo Vázquez, Sergio; Toral, S. L.; Martínez Torres, María del Rocío; Universidad de Sevilla. Departamento de Administración de Empresas y Comercialización e Investigación de Mercados (Marketing); Universidad de Sevilla. Departamento de Ingeniería ElectrónicaEl presente trabajo describe un entorno domótico, desarrollado en el Departamento de Ingeniería Electrónica de la Universidad de Sevilla, que permite el desarrollo de prácticas docentes en varias asignaturas adscritas al Departamento de Ingeniería Electrónica asociadas, en principio, a la titulación de Ingeniería de Telecomunicación, aunque podrían fácilmente extenderse al resto de titulaciones impartidas por el Departamento mencionado. El entorno se ha desarrollado con vistas a su uso como sistema base para el desarrollo de trabajos prácticos (hardware y/o software) en una asignatura obligatoria de 3er curso de la titulación de Ingeniería de Telecomunicación denominada "Complemento de Sistemas Electrónicos Digitales" y otra optativa de 5º curso de la misma titulación denominada "Laboratorio de Instrumentación Electrónica". La utilización de este sistema, que se empleará por primera vez durante el curso 2006-2007, permitirá al alumno disponer del mismo banco de prácticas para desarrollar en torno a él trabajos prácticos en los que intervengan los conocimientos adquiridos en la carreraCapítulo de Libro Computer vision techniques for background modelling in urban traffic monitoring(INTECH Open Science, 2010-08) Milla, José Manuel; Toral, S. L.; Vargas Villanueva, Manuel; Barrero, Federico; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática; Soylu, SerefIn this chapter, several background modelling techniques have been described, analyzed and tested. In particular, different algorithms based on sigma-delta filter have been considered due to their suitability for embedded systems, where computational limitations affect a real-time implementation. A qualitative and a quantitative comparison have been performed among the different algorithms. Obtained results show that the sigma-delta algorithm with confidence measurement exhibits the best performance in terms of adaptation to particular specificities of urban traffic scenes and in terms of computational requirements. A prototype based on an ARM processor has been implemented to test the different versions of the sigma-delta algorithm and to illustrate several applications related to vehicle traffic monitoring and implementation details.Capítulo de Libro Open-phase fault operation on multiphase induction 3 motor drives(INTECH Open Science, 2015-11) Guzmán, Hugo; González Prieto, Ignacio; Barrero, Federico; Durán, Mario J.; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Igmar, Raúl; Recalde, GregorMultiphase machines have been recognized in the last few years like an attractive alternative to conventional three-phase ones. This is due to their usefulness in a niche of applications where the reduction in the total power per phase and, mainly, the high overall system reliability and the ability of using the multiphase machine in faulty conditions are required. Electric vehicle and railway traction, all-electric ships, more-electric aircraft or wind power generation systems are examples of up-to-date real applications using multiphase machines, most of them taking advantage of the ability of continuing the operation in faulty conditions. Between the available multiphase machines, symmetrical five-phase induction machines are probably one of the most frequently considered multiphase machines in recent research. However, other multiphase machines have also been used in the last few years due to the development of more powerful microprocessors. This chapter analyzes the behavior of generic n-phase machines (beingn any odd number higher than 3) in faulty operation (considering the most common faulty operation, i.e. the open phase fault). The obtained results will be then particularized to the 5-phase case, where some simulation and experimental results will be presented to show the behavior of the entire system in healthy and faulty conditions. The chapter will be organized as follows: First, the different faults in a multiphase machine are analyzed. Fault conditions are de tailed and explained, and the interest of a multiphase machine in the management of faults is stated. The effect of the open-phase fault operation in the machine model is then studied. A generic n-phase machine is considered, being n any odd number greater than three. The analysis is afterwards particularized to the 5-phase machine, where the open phase fault condition is managed using different control methods and the obtained results are compared. Finally, the conclusions are presented in the last section of the chapter.Capítulo de Libro Reduced-order observer analysis in MBPC techniques applied to the six-phase induction motor drives(INTECH Open Science, 2015-11) Gregor, Raúl; Rodas, Jorge; Gregor, Derlis; Barrero, Federico; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Gregor, Raúl;Model-based predictive control techniques have been recently applied with success in power electronics, particularly in the fields of current control applied to AC multiphase electrical drives. In AC electrical drives control, most of state variables (i.e., rotor currents, rotor fluxes, etc.) cannot be measured, so they must be estimated. As a result of this issue, this chapter proposes a comparative study of reduced-order observers used to estimate the rotor currents in an model-based predictive current control applied to the six-phase induction motor. The proposed control techniques are evaluated using the Luenberger observer and the optimal estimator based on Kalman filter. Different operation modes are analyzed and are further compared in terms of statistical parameters of performance (i.e., covariance, standard deviation, mean square error, etc.). The effectiveness of proposed methods is verified by a set of comparative experiments obtained by using a six-phase induction motor system experimental setup.Capítulo de Libro Remote instrumentation laboratory for digital signal processors training(INTECH Open Science, 2011-08) Gallardo Vázquez, Sergio; Barrero, Federico; Toral, S. L.; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Folea, SilviuCapítulo de Libro Application of DSP in power conversion systems — A practical approach for multiphase drives(INTECH Open Science, 2015) Guzmán, Hugo; Bermúdez Guzmán, Mario; Martín Torres, Cristina; Barrero, Federico; Durán, Mario J.; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Radhakrishnan, SudhakarDigital Signal Processing is not a recent research field, but has become a powerful technology to solve engineering problems in the last few decades due to the introduction by Texas Instruments in 1982 of the Digital Signal Processor. Fast digital signal processors have quickly become a cornerstone of high-performance electrical drives, where power electronic conversion systems have heavy online computation burdens and must be controlled using complex control algorithms. In this sense, multiphase drives represent a particularly interesting case of study, where the computational cost highly increases with each extra phase. This technology has been recognized in recent times as an attractive electrical drive due to its usefulness in traction, more-electric aircraft applications and wind power generation systems. However, the complexity of the required control algorithms and signal processing techniques notably increases in relation with conventional three-phase drives. This chapter makes a revision of the necessities of a high-performance multiphase drive from the digital signal processing perspective. One of the most powerful Texas Instruments’ digital signal processor (TMS320F28335) is used, and specific control algorithms, electronic circuits and acquisition processing methods are designed, implemented and analyzed to show its interest in the development of a high-performance multiphase drive.Capítulo de Libro Low-power and low-voltage analog-to-digital converters for wearable EEG systems(2009) García González, J. M.; López Morillo, Enrique; Muñoz Chavero, Fernando; El Gmili, Hakim; González Carvajal, Ramón; Universidad de Sevilla. Departamento de Ingeniería Electrónica