Capítulos (Ingeniería de Sistemas y Automática)

URI permanente para esta colecciónhttps://hdl.handle.net/11441/11343

Examinar

Envíos recientes

Mostrando 1 - 6 de 6
  • Acceso AbiertoCapítulo de Libro
    Caso práctico para el diseño de un sistema con múltiples drones para extinción de incendios
    (Universidad de Sevilla, 2022) Capitán Fernández, Jesús; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática; Universidad de Sevilla. TEP151: Robótica, Visión y Control
    Este capítulo describe el diseño, aplicación y evaluación de un Ciclo de Mejora en el Aula (CIMA) para la asignatura de ingeniería denominada Ampliación de Robótica. A lo largo del CIMA, se plantea una serie de actividades docentes innovadoras basadas en un caso práctico para el diseño de un sistema con múltiples drones para la extinción de incendios. El documento explica el contexto docente del CIMA, la metodología aplicada y conclusiones de mejora tras su evaluación.
  • Acceso AbiertoCapítulo de Libro
    Versatilidad y eficiencia de los autómatas celulares para la simulación y análisis de sistemas complejos en Ingeniería
    (3ciencias, 2022-02) Sánchez Cuevas, Pablo; Díaz del Río, Fernando; Cagigas Muñiz, Daniel; Guisado Lizar, José Luis; Morón Fernández, María José; Real Jurado, Pedro; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática; Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores; Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII); Universidad de Sevilla. TEP151: Robótica, Visión y Control; Universidad de Sevilla. TEP108: Robótica y Tecnología de Computadores; Universidad de Sevilla. TIC-171 Diseño de Interfaces Avanzados (Diana); Universidad de Sevilla. TIC245: Topological Pattern Analysis, Recognition and Learning
    Los autómatas celulares se componen de un conjunto de celdas (generalmente simples) interactuantes que evolucionan en pasos discretos, formando un sistema dinámico. Sus aplicaciones son múltiples y en muy diversos campos, no sólo dentro de la ingeniería sino dentro de las ciencias sociales, la economía, la biología, o las ciencias en general. Actualmente son una de las mejores maneras de simular un problema espacio-temporal, donde la vecindad y colaboración entre agentes (celdas) sea clave y resulte finalmente en uno o varios fenómenos emergentes. Además, su ventaja es que son intrínsicamente paralelos, permitiendo predecir el comportamiento de sistemas complejos con entradas diversas en muy poco tiempo, al poder repartirlos fácilmente en múltiples procesadores o en GPUs (Graphic Processing Units).
  • Acceso AbiertoCapítulo de Libro
    Model predictive control of largue scale solar trough plants
    (Nova science publishers, 2019) Camacho, Eduardo F.; Sánchez del Pozo Fernández, Adolfo Juan; Gallego Len, Antonio Javier; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática
    One of the current technological challenges is to make solar energy economical and competitive. Advanced control techniques may contribute in this direction by maximizing the electricity generated by using optimal control strategies. A number of research works have been developed concerning control and optimization of solar plants. Most of these works have been developed for the experimental solar trough plant of ACUREX at the Plataforma solar de Almería (PSA) (10 parallel loops of collectors). Generally, small plants such as the ACUREX field can be modelled as an equivalent loop for developing control strategies. Commercial solar trough plants are very extensive, covering vast areas. As an example, Solana Generating Station which has 808 parallel loops of four collectors connected in series (3,232 collectors) covering 780 hectares. The optimization of large scale solar trough plants poses important challenges which require new advanced control techniques to address them: 1. The optical efficiency of different groups of loops may be substantially different in large scale solar plants. The most efficient loops will probably have to be defocused to avoid excessive temperatures. Paradoxically, the most efficient loops will have the higher energy losses because of defocusing. To avoid this energy loss, the valves of the most efficient loops would have to be opened to increase the HTF flow. However, any movement of the valve in one of the loops will influence the flow of the rest of the loops. Loop valves are only used in current plants for steady state flow balancing. 2. Scattered clouds may only affect the locations where the sensors are placed, while the rest of the plant may be under the effect of intense DNI, or vice versa. Sudden changes in DNI produced by scattered clouds induce oscillations so severe that the solar field may have to be defocused or shutdown. This fact produces, in general, not only energy losses but plant deterioration. A spatially distributed DNI nowcasting can be used to improve plant operation and optimize the production. This chapter presents some new concepts and ideas that the authors believe will be the future steps in the development and progress of solar thermal energy. Preliminary results for advanced control of solar plants are presented, using more effective defocusing mechanisms and dynamic thermal balance of loops that have already shown to produce significant gains,.
  • Acceso AbiertoCapítulo de Libro
    Advanced Control Algorithms and New Challenges in Parabolic Trough Solar Plants: A Review
    (Nova Science Publishers, 2019) Gallego Len, Antonio Javier; Sánchez del Pozo Fernández, Adolfo Juan; Camacho, Eduardo F.; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática
    The majority of solar thermal plants which produce electricity and deliver it to the grid use parabolic trough technology. As examples of large scale solar trough plants we can mention the SOLANA power station (280 MW of electricity power with 6 hour of thermal storage) or the 280 MW Mojave solar complex. As stated by the National American Academy and the European Commission, one of the main challenges is to improve the overall efficiency of the solar energy plants. To address this challenge, advanced control techniques play a decisive role. This chapter presents a review of the main control techniques applied to parabolic solar trough plants as well as modeling approaches used to describe the behavior of these kind of plants. Since modeling a large scale solar plant very precisely would involve taking into account many elements which compose the plant, the resulting model can be very demanding from the computational time point of view. In this chapter, the general equations to model the solar plant are presented as well as a simple approach used for the commercial solar trough plants of Mojave. This approach provided a very good trade off between precision and complexity. As far as control algorithms are concerned, the chapter mainly focuses on the Model predictive control algorithm and optimization. The control objective of this kind of plants is explained and a description of several control strategies applied to solar trough plants is provided. A example of a model predictive control strategy applied to the old ACUREX solar collector field at the Plataforma Solar de Almería is given. However, the majority of the control strategies existing in the literature are applied to small scale solar trough plants. When dealing with large scale solar trough plants, new problems and challenges appear which have to be addressed. Current commercial solar trough plants have a considerable size and cover a vast extension. They pose additional challenges from the control and optimization point of view. New control algorithms have to be designed to address this issue. Due to the size of these plants, there can be groups of loops affected by different radiation levels due to passing clouds. Furthermore, the efficiency of the loops can be different because a group of them is cleaned and another is not. Some preliminary results published in the literature are reviewed and possible future directions for research are given. Additionally one illustrative example is provided to show the advantage of implementing advanced control strategies using a model of a large scale solar trough plant.
  • Acceso AbiertoCapítulo de Libro
    Model Predictive Control of Solar Cooling Plants: Review and Applications
    (IFSA Publishing, 2018) Gallego Len, Antonio Javier; Sánchez del Pozo Fernández, Adolfo Juan; Escaño González, Juan Manuel; Camacho, Eduardo F.; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática
  • Acceso AbiertoCapítulo de Libro
    Computer vision techniques for background modelling in urban traffic monitoring
    (INTECH Open Science, 2010-08) Milla, José Manuel; Toral, S. L.; Vargas Villanueva, Manuel; Barrero, Federico; Universidad de Sevilla. Departamento de Ingeniería Electrónica; Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática; Soylu, Seref
    In this chapter, several background modelling techniques have been described, analyzed and tested. In particular, different algorithms based on sigma-delta filter have been considered due to their suitability for embedded systems, where computational limitations affect a real-time implementation. A qualitative and a quantitative comparison have been performed among the different algorithms. Obtained results show that the sigma-delta algorithm with confidence measurement exhibits the best performance in terms of adaptation to particular specificities of urban traffic scenes and in terms of computational requirements. A prototype based on an ARM processor has been implemented to test the different versions of the sigma-delta algorithm and to illustrate several applications related to vehicle traffic monitoring and implementation details.