Artículos (Matemática Aplicada II)
URI permanente para esta colecciónhttps://hdl.handle.net/11441/10899
Examinar
Examinando Artículos (Matemática Aplicada II) por Autor "Alonso Meijide, José María"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Artículo Marginality and convexity in partition function form games(Springer Nature, 2021-08) Alonso Meijide, José María; Álvarez Mozos, Mikel; Fiestras Janeiro, M. Gloria; Jiménez Losada, Andrés; Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI); European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER); Ministerio de Ciencia, Innovación y Universidades (MICINN). España; Agencia Estatal de Investigación. España; Generalitat de Catalunya; Junta de Andalucía; Xunta de GaliciaIn this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.Artículo Two families of values for global cooperative games(Springer, 2024-04-03) Alonso Meijide, José María; Álvarez Mozos. Mikel; Fiestras Janeiro, María Gloria; Jiménez Losada, Andrés; Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI); Ministerio de Ciencia e Innovación (MICIN). España; Xunta de Galicia; Generalitat de Catalunya; Universidad de Sevilla. FQM237: Juegos con Estructuras Combinatorias y de OrdenA global (cooperative) game describes the utility that the whole set of players generates depending on the coalition structure they form. These games were introduced by Gilboa and Lehrer (Int J Game Theory 20:129–147, 1991) who proposed and characterized a generalization of the Shapley value. We introduce two families of point valued solutions that contain the Gilboa–Lehrer value. We characterize each family by means of reasonable properties, which are related to the ones used by Gilboa and Lehrer.