Ecuaciones Diferenciales y Análisis Numérico
URI permanente para esta comunidadhttps://hdl.handle.net/11441/10833
Examinar
Examinando Ecuaciones Diferenciales y Análisis Numérico por Agencia financiadora "Agencia Estatal de Investigación (AEI). España"
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Artículo Non-autonomous nonlocal partial differential equations with delay and memory(Elsevier [Commercial Publisher], Academic Press [Associate Organisation], 2020-09-15) Xu, Jiaohui; Zhang, Zhengce; Caraballo Garrido, Tomás; Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico; Ministerio de Ciencia, Innovación y Universidades (MCIU). España; Agencia Estatal de Investigación (AEI). España; European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER); Junta de Andalucía (Consejería de Economía y Conocimiento)The paper addresses a kind of non-autonomous nonlocal parabolic equations when the external force contains hereditary characteristics involving bounded and unbounded delays. First, well-posedness of the problem is analyzed by the Galerkin method and energy estimations in the phase space Cρ(X). Moreover, some results related to strong solutions are proved under suitable assumptions. The existence of stationary solutions is then established by a corollary of the Brower fixed point theorem. By constructing appropriate Lyapunov functionals in terms of the characteristic delay terms, a deep analysis on stability and attractive-ness of the stationary solutions is established. Furthermore, the existence of pullback attractors in L2( ), with bounded and unbounded delays, is shown. We emphasize that, to prove the existence of pullback attractors in the unbounded delay case, a new phase space, Eγ, has to be constructed.