Artículos (Física Aplicada I)
URI permanente para esta colecciónhttps://hdl.handle.net/11441/10849
Examinar
Examinando Artículos (Física Aplicada I) por Agencia financiadora "AEI-MICINN PID2019-110430GB-C21"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Artículo Coarse-grained approach to amorphous and anisotropic materials in kinetic Monte Carlo thin-film growth simulations: A case study of TiO₂ and ZnO by plasma-enhanced chemical vapor deposition(Wiley, 2022-03) Budagosky Marcilla, Jorge Alejandro; García Casas, Xabier; Sánchez Valencia, Juan Ramón; Barranco Quero, Ángel; Borrás Martos, Ana Isabel; Universidad de Sevilla. Departamento de Física Aplicada I; AEI-MICINN PID2019-110430GB-C21; AEI-MICINN PID2019-109603RA-I0; Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (PAIDI-2020) and EU FEDER 2014–2020 project US-1263142; Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (PAIDI-2020) and EU FEDER 2014–2020 project AT17-6079; Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (PAIDI-2020) and EU FEDER 2014–2020 project P18-RT-3480; EU H2020 program under the grant agreement 851929 (ERC Starting Grant 3DScavengers); EU H2020 program under the grant agreement 899352 (FETOPEN-01-2018-2019-2020 SOUNDofICE)The growth of TiO₂ and ZnO thin films is studied by means of coarse-grained kinetic Monte Carlo simulations under conditions typically encountered in plasma-enhanced chemical vapor deposition experiments. The basis of our approach is known to work well to simulate the growth of amorphous materials using cubic grids and is extended here to reproduce not only the morphological characteristics and scaling properties of amorphous TiO₂ but also the growth of polycrystalline ZnO with a good approximation, including the evolution of the film texture during growth and its dependence on experimental conditions. The results of the simulations have been compared with available experimental data obtained by X-ray diffraction, analysis of the texture coefficients, atomic force microscopy, and scanning electron microscopy.Artículo Plasma engineering of microstructured piezo – Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting(Elsevier, 2022-01) García Casas, Xabier; Ghaffarinejad, Ali; Aparicio Rebollo, Francisco Javier; Castillo Seoane, Javier; López Santos, Carmen; Espinós Manzorro, Juan Pedro; Cotrino Bautista, José; Sánchez Valencia, Juan Ramón; Barranco Quero, Ángel; Borrás Martos, Ana Isabel; Universidad de Sevilla. Departamento de Física Aplicada I; Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear; AEI-MICINN PID2019-110430GB-C21; AEI-MICINN PID2019-109603RA-I0; Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (PAIDI-2020) and FEDER, EU US-1263142; Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (PAIDI-2020) and FEDER, EU US-1381057; Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (PAIDI-2020) and FEDER, EU US-1381045; EU H2020 program grant agreement 851929; Universidad de Sevilla. FQM-196: Nanotecnología en Superficies y PlasmaWe introduce herein the advanced application of low-pressure plasma procedures for the development of piezo and triboelectric mode I hybrid nanogenerators. Thus, plasma assisted deposition and functionalization methods are presented as key enabling technologies for the nanoscale design of ZnO polycrystalline shells, the formation of conducting metallic cores in core@shell nanowires, and for the solventless surface modification of polymeric coatings and matrixes. We show how the perfluorinated chains grafting of polydimethylsiloxane (PDMS) provides a reliable approach to increase the hydrophobicity and surface charges at the same time that keeping the PDMS mechanical properties. In this way, we produce efficient Ag/ZnO convoluted piezoelectric nanogenerators supported on flexible substrates and embedded in PDMS compatible with a contact–separation triboelectric architecture. Factors like crystalline texture, ZnO thickness, nanowires aspect ratio, and surface chemical modification of the PDMS are explored to optimize the power output of the nanogenerators aimed for harvesting from low-frequency vibrations. Just by manual triggering, the hybrid device can charge a capacitor to switch on an array of color LEDs. Outstandingly, this simple three-layer architecture allows for harvesting vibration energy in a wide bandwidth, thus, we show the performance characteristics for frequencies between 1 Hz and 50 Hz and demonstrate the successful activation of the system up to ca. 800 Hz.