Repositorio de producción científica de la Universidad de Sevilla

Fragments of Arithmetic and true sentences

 

Advanced Search
 
Opened Access Fragments of Arithmetic and true sentences
Cites

Show item statistics
Icon
Export to
Author: Cordón Franco, Andrés
Fernández Margarit, Alejandro
Lara Martín, Francisco Félix
Department: Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Date: 2005
Published in: Mathematical Logic Quaterly, 51 (3), 313-328.
Document type: Article
Abstract: By a theorem of R. Kaye, J. Paris and C. Dimitracopoulos, the class of the ¦n+1–sentences true in the standard model is the only (up to deductive equivalence) consistent ¦n+1–theory which extends the scheme of induction for parameter free ¦n+1–formulas. Motivated by this result, we present a systematic study of extensions of bounded quantifier complexity of fragments of first–order Peano Arithmetic. Here, we improve that result and show that this property describes a general phenomenon valid for parameter free schemes. As a consequence, we obtain results on the quantifier complexity, (non)finite axiomatizability and relative strength of schemes for ¢n+1–formulas.
Cite: Cordón Franco, A., Fernández Margarit, A. y Lara Martín, F.F. (2005). Fragments of Arithmetic and true sentences. Mathematical Logic Quaterly, 51 (3), 313-328.
Size: 253.7Kb
Format: PDF

URI: https://hdl.handle.net/11441/87545

DOI: 10.1002/malq.200410034

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)