Repositorio de producción científica de la Universidad de Sevilla

Near-infinity concentrated norms and the fixed point property for nonexpansive maps on closed, bounded, convex sets

 

Advanced Search
 
Opened Access Near-infinity concentrated norms and the fixed point property for nonexpansive maps on closed, bounded, convex sets
Cites

Show item statistics
Icon
Export to
Author: Castillo Santos, Francisco Eduardo
Dowling, Patrick N.
Fetter Nathansky, Helga Andrea
Japón Pineda, María de los Ángeles
Lennard, Christopher J.
Sims, Brailey
Turett, Barry
Department: Universidad de Sevilla. Departamento de Análisis Matemático
Date: 2018-08-01
Published in: Journal of Functional Analysis, 275 (3), 559-576.
Document type: Article
Abstract: In this paper we define the concept of a near-infinity concentrated norm on a Banach space X with a boundedly complete Schauder basis. When k · k is such a norm, we prove that (X, k · k) has the fixed point property (FPP); that is, every nonexpansiv...
[See more]
Size: 217.5Kb
Format: PDF

URI: https://hdl.handle.net/11441/80137

DOI: 10.1016/j.jfa.2018.04.007

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)