Repositorio de producción científica de la Universidad de Sevilla

Modelling interannual variation in the spring and autumn land surface phenology of the European forest

Opened Access Modelling interannual variation in the spring and autumn land surface phenology of the European forest

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Rodríguez Galiano, Víctor Francisco
Sánchez Castillo, Manuel
Dash, Jadunandan
Atkinson, Peter
Ojeda Zújar, José
Departamento: Universidad de Sevilla. Departamento de Geografía Física y Análisis Geográfico Regional
Fecha: 2016
Publicado en: Biogeosciences, 13, 3305-3317.
Tipo de documento: Artículo
Resumen: This research reveals new insights into the weather drivers of interannual variation in land surface phenology (LSP) across the entire European forest, while at the same time establishes a new conceptual framework for predictive modelling of LSP. Specifically, the random-forest (RF) method, a multivariate, spatially non-stationary and nonlinear machine learning approach, was introduced for phenological modelling across very large areas and across multiple years simultaneously: the typical case for satellite-observed LSP. The RF model was fitted to the relation between LSP interannual variation and numerous climate predictor variables computed at biologically relevant rather than humanimposed temporal scales. In addition, the legacy effect of an advanced or delayed spring on autumn phenology was explored. The RF models explained 81 and 62 % of the variance in the spring and autumn LSP interannual variation, with relative errors of 10 and 20 %, respectively: a level of p...
[Ver más]
Cita: Rodríguez Galiano, V.F., Sánchez Castillo, M., Dash, J., Atkinson, P. y Ojeda Zujar, J. (2016). Modelling interannual variation in the spring and autumn land surface phenology of the European forest. Biogeosciences, 13, 3305-3317.
Tamaño: 1.686Mb
Formato: PDF

URI: https://hdl.handle.net/11441/74294

DOI: 10.5194/bg-13-3305-2016

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América

Este registro aparece en las siguientes colecciones