Repositorio de producción científica de la Universidad de Sevilla

Fully stable numerical calculations for finite onedimensional structures: mapping the Transfer Matrix method

Opened Access Fully stable numerical calculations for finite onedimensional structures: mapping the Transfer Matrix method

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Luque Raigón, Jose Miguel
Helme, Janne
Míguez, Hernán
Departamento: Universidad de Sevilla. Departamento de Ingeniería Macánica y de los Materiales
Fecha: 2014
Publicado en: Journal of Quantitative Spectroscopy and Radiative Transfer, 134, 9-20.
Tipo de documento: Artículo
Resumen: We design a fully stable numerical solution of the Maxwell´s equations with the Transfer Matrix Method (TMM) to understand the interaction between an electromagnetic field and a finite, one-dimensional, nonperiodic structure. Such an exact solution can be tailored from a conventional solution by choosing an adequate transformation between its reference systems, which induces a mapping between its associated TMMs. The paper demonstrates theoretically the numerical stability of the TMM for the exact solution within the framework of Maxwell´s equations, but the same formalism can efficiently be applied to resolve other classical or quantum linear wave-propagation interaction in one, two, and three dimensions. This is because the formalism is exclusively built up for an in depth analysis of the TMM´s symmetries
Cita: Luque Raigón, J.M., Helme, J. y Míguez, H. (2014). Fully stable numerical calculations for finite onedimensional structures: mapping the Transfer Matrix method. Journal of Quantitative Spectroscopy and Radiative Transfer, 134, 9-20.
Tamaño: 968.9Kb
Formato: PDF

URI: https://hdl.handle.net/11441/74180

DOI: 10.1016/j.jqsrt.2013.10.007

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América

Este registro aparece en las siguientes colecciones