Repositorio de producción científica de la Universidad de Sevilla

New advances in the study of Gröbner bases and the number of latin squares related to autotopisms

 

Advanced Search
 
Opened Access New advances in the study of Gröbner bases and the number of latin squares related to autotopisms
Cites
Show item statistics
Icon
Export to
Author: Martín Morales, Jorge
Falcón Ganfornina, Raúl Manuel
Department: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Date: 2008-02
Published in: Conferencia Internacional sobre Álgebra Conmutativa, Combinatoria y Computacional en Memoria de Pilar Pisón Casares (2008),
Document type: Presentation
Abstract: Gröbner bases has been used in [4] to describe an algorithm that allows one to obtain the number of Latin squares of order up to 7 having a given isotopism in their autotopism group. In order to improve the time of computation of this algorithm, we study in this poster a possible combination between Gröbner bases and some combinatorial tools. Specifically, we add to the ideal of polynomials defining a Latin square L, some polynomials related to the permutations of rows, columns and symbols corresponding to the given autotopism of L. Using this method we could obtain the number of some Latin squares of order 8 having an isotopism in their autotpism group.
Cite: Martín Morales, J. y Falcón Ganfornina, R.M. (2008). New advances in the study of Gröbner bases and the number of latin squares related to autotopisms. En Conferencia Internacional sobre Álgebra Conmutativa, Combinatoria y Computacional en Memoria de Pilar Pisón Casares, Sevilla.
Size: 157.1Kb
Format: PDF

URI: https://hdl.handle.net/11441/69293

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)