Repositorio de producción científica de la Universidad de Sevilla

Quantitative results on Fejér monotone sequences

Opened Access Quantitative results on Fejér monotone sequences

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Kohlenbach, Ulrich Wilhelm
Leustean, Laurentiu
Nicolae, Adriana
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2017
Publicado en: Communications in Contemporary Mathematics, 1750015-1-1750015-42.
Tipo de documento: Artículo
Resumen: We provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fej´er monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of so-called metastability in the sense of T. Tao. Our approach covers examples ranging from the proximal point algorithm for maximal monotone operators to various fixed point iterations (xn) for firmly nonexpansive, asymptotically nonexpansive, strictly pseudo-contractive and other types of mappings. Many of the results hold in a general metric setting with some convexity structure added (so-called W-hyperbolic spaces). Sometimes uniform convexity is assumed still covering the important class of CAT(0)-spaces due to Gromov.
Cita: Anónimo. .
Tamaño: 419.2Kb
Formato: PDF

URI: http://hdl.handle.net/11441/64257

DOI: 10.1142/S0219199717500158

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones