Repositorio de producción científica de la Universidad de Sevilla

Boson expansion methods applied to a two-level model in the study of multiple giant resonances

Opened Access Boson expansion methods applied to a two-level model in the study of multiple giant resonances

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Volpe, C.
Chomaz, Philippe
Andrés Martín, María Victoria
Catara, Francesco
Lanza, Edoardo G.
Departamento: Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear
Fecha: 1999-03-08
Publicado en: Nuclear Physics A, 647 (3-4), 1-12.
Tipo de documento: Artículo
Resumen: We apply boson expansion methods to an extended exactly solvable Lipkin-Meshkov-Glick model including anharmonicities in analogy with previous microscopic calculations. We study the effects of different approximations present in these calculations, among which the truncation of the Hamiltonian and of the space, in connection with the study of the properties of two-phonon states. By comparing the approximate results on the spectrum with the exact ones we conclude that the approximations made in the microscopic calculations on two-phonon states are well justified. We find also that a good agreement with the exact results for the three-phonon state is obtained by using a bosonic Hamiltonian truncated at the fourth order. This result makes us confident that such approximation can be used in future realistic calculations, thus allowing a theoretical study of triple excitations of giant resonances.
Cita: Volpe, C., Chomaz, P., Andrés Martín, M.V., Catara, F. y Lanza, E.G. (1999). Boson expansion methods applied to a two-level model in the study of multiple giant resonances. Nuclear Physics A, 647 (3-4), 1-12.
Tamaño: 219.6Kb
Formato: PDF

URI: http://hdl.handle.net/11441/64228

DOI: 10.1016/S0375-9474(99)00016-0

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones