Repositorio de producción científica de la Universidad de Sevilla

Well-posedness and dynamics of a fractional stochastic integro-differential equation

 

Advanced Search
 
Opened Access Well-posedness and dynamics of a fractional stochastic integro-differential equation
Cites

Show item statistics
Icon
Export to
Author: Liu, Linfang
Caraballo Garrido, Tomás
Department: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Date: 2017-09-15
Published in: Physica D: Nonlinear Phenomena, 355, 45-57.
Document type: Article
Abstract: In this paper we investigate the well-posedness and dynamics of a fractional stochastic integro-differential equation describing a reaction process depending on the temperature itself. Existence and uniqueness of solutions of the integro-differential equation is proved by the Lumer-Phillips theorem. Besides, under appropriate assumptions on the memory kernel and on the magnitude of the nonlinearity, the existence of random attractor is achieved by obtaining first some a priori estimates. Moreover, the random attractor is shown to have finite Hausdorff dimension.
Cite: Liu, L. y Caraballo Garrido, T. (2017). Well-posedness and dynamics of a fractional stochastic integro-differential equation. Physica D: Nonlinear Phenomena, 355, 45-57.
Size: 422.0Kb
Format: PDF

URI: http://hdl.handle.net/11441/64146

DOI: 10.1016/j.physd.2017.05.006

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)