Repositorio de producción científica de la Universidad de Sevilla

Using Machine Learning to Infer Constraints for Product Lines

Opened Access Using Machine Learning to Infer Constraints for Product Lines

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Temple, Paul
Galindo Duarte, José Ángel
Acher, Mathieu
Jézéquel, Jean-Marc
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2016
Publicado en: SPLC 2016 : 20th International Systems and Software Product Line Conference (2016), p 209-218
Tipo de documento: Ponencia
Resumen: Variability intensive systems may include several thousand features allowing for an enormous number of possible configurations, including wrong ones (e.g. the derived product does not compile). For years, engineers have been using constraints to a priori restrict the space of possible configurations, i.e. to exclude configurations that would violate these constraints. The challenge is to find the set of constraints that would be both precise (allow all correct configurations) and complete (never allow a wrong configuration with respect to some oracle). In this paper, we propose the use of a machine learning approach to infer such product-line constraints from an oracle that is able to assess whether a given product is correct. We propose to randomly generate products from the product line, keeping for each of them its resolution model. Then we classify these products accord-ing to the oracle, and use their resolution models to infer crosstree constraints over the produ...
[Ver más]
Cita: Temple, P., Galindo Duarte, J.Á., Acher, M. y Jézéquel, J. (2016). Using Machine Learning to Infer Constraints for Product Lines. En SPLC 2016 : 20th International Systems and Software Product Line Conference (209-218), Beijing, China: ACM.
Tamaño: 1.629Mb
Formato: PDF

URI: http://hdl.handle.net/11441/62946

DOI: 10.1145/2934466.2934472

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones