Repositorio de producción científica de la Universidad de Sevilla

SIP: Optimal Product Selection from Feature Models Using Many-Objective Evolutionary Optimization

Acceso restringido SIP: Optimal Product Selection from Feature Models Using Many-Objective Evolutionary Optimization

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Hierons, Robert M.
Li, Miqing
Liu, Xiaohui
Segura Rueda, Sergio
Zheng, Wei
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2016
Publicado en: ACM Transactions on Software Engineering and Methodology, 25 (2), 17-1-17-39.
Tipo de documento: Artículo
Resumen: A feature model specifies the sets of features that define valid products in a software product line. Recent work has considered the problem of choosing optimal products from a feature model based on a set of user preferences, with this being represented as a many-objective optimization problem. This problem has been found to be difficult for a purely search-based approach, leading to classical many-objective optimization algorithms being enhanced either by adding in a valid product as a seed or by introducing additional mutation and replacement operators that use an SAT solver. In this article, we instead enhance the search in two ways: by providing a novel representation and by optimizing first on the number of constraints that hold and only then on the other objectives. In the evaluation, we also used feature models with realistic attributes, in contrast to previous work that used randomly generated attribute values. The results of experiments were promising, with the prop...
[Ver más]
Cita: Hierons, R.M., Li, M., Liu, X., Segura Rueda, S. y Zheng, W. (2016). SIP: Optimal Product Selection from Feature Models Using Many-Objective Evolutionary Optimization. ACM Transactions on Software Engineering and Methodology, 25 (2), 17-1-17-39.
Tamaño: 797.6Kb
Formato: PDF

URI: http://hdl.handle.net/11441/60707

DOI: 10.1145/2897760

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones