Asymptotic centers and fixed points for multivalued nonexpansive mappings
Author | Domínguez Benavides, Tomás
Lorenzo Ramírez, Josefa |
Department | Universidad de Sevilla. Departamento de Análisis Matemático |
Date | 2004 |
Published in | Annales Universitatis Mariae Curie-Sklodowska. Sectio A, Mathematica, 58, 37-45. |
Document type | Article |
Abstract | Let X be a nearly uniformly convex Banach space, C a convex closed bounded subset of X and T : C → 2 C a multivalued nonexpansive
mapping with convex compact values. We prove that T has a fixed point. This result improves ... Let X be a nearly uniformly convex Banach space, C a convex closed bounded subset of X and T : C → 2 C a multivalued nonexpansive mapping with convex compact values. We prove that T has a fixed point. This result improves former results in Domínguez Benavides, T., P. Lorenzo, Fixed point theorems for multivalued nonexpansive mappings without uniform convexity, Abstr. Appl. Anal. 2003:6 (2003), 375–386 and solves an open problem appearing in Xu, H.K., Metric fixed point theory for multivalued mappings, Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39 pp. |
Cite | Domínguez Benavides, T. y Lorenzo Ramírez, J. (2004). Asymptotic centers and fixed points for multivalued nonexpansive mappings. Annales Universitatis Mariae Curie-Sklodowska. Sectio A, Mathematica, 58, 37-45. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Asymptotic centers and fixed ... | 211.3Kb | ![]() | View/ | |
Editor´s version:
http://dlibra.umcs.lublin.pl/Content/22081/czas4050_58_2004_4.pdf