Repositorio de producción científica de la Universidad de Sevilla

A sub-supersolution method for nonlinear elliptic singular systems with natural growth and some applications

 

Advanced Search
 
Opened Access A sub-supersolution method for nonlinear elliptic singular systems with natural growth and some applications
Cites

Show item statistics
Icon
Export to
Author: Carmona Tapia, José
Martínez Aparicio, Pedro Jesús
Suárez Fernández, Antonio
Department: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Date: 2016-02
Published in: Nonlinear Analysis: Theory, Methods and Applications, 132, 47-65.
Document type: Article
Abstract: In this paper we give a sub-supersolution method for nonlinear elliptic singular systems with quadratic gradient whose model system is the following where Ω is a smooth bounded domain of RN (N≥3), β,μ≥0, 0<α,γ<1 and regular f1,f2 functions. Moreover, we apply it to prove existence of solution for some systems, including the classical Lotka-Volterra models with gradient terms. Specifically, we study the competition and the symbiotic Lotka-Volterra systems.
Cite: Carmona Tapia, J., Martínez Aparicio, P.J. y Suárez Fernández, A. (2016). A sub-supersolution method for nonlinear elliptic singular systems with natural growth and some applications. Nonlinear Analysis: Theory, Methods and Applications, 132, 47-65.
Size: 473.9Kb
Format: PDF

URI: http://hdl.handle.net/11441/47886

DOI: 10.1016/j.na.2015.10.022

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)