Show simple item record

dc.creatorAriza Ruiz, Davides
dc.creatorBriseid, Eyvind Martoles
dc.creatorJiménez Melado, Antonioes
dc.creatorLópez Acedo, Genaroes
dc.date.accessioned2016-10-05T11:30:39Z
dc.date.available2016-10-05T11:30:39Z
dc.date.issued2013
dc.identifier.citationAriza Ruiz, D., Briseid, E.M., Jiménez Melado, A. y López Acedo, G. (2013). Rate of convergence under weak contractiveness conditions. Fixed Point Theory, 14 (1), 11-28.
dc.identifier.issn1583-5022es
dc.identifier.issn2066-9208es
dc.identifier.urihttp://hdl.handle.net/11441/47033
dc.description.abstractWe introduce a new class of selfmaps T of metric spaces, which generalizes the weakly Zamfirescu maps (and therefore weakly contraction maps, weakly Kannan maps, weakly Chatterjea maps and quasi-contraction maps with constant h < 1 / 2). We give an explicit Cauchy rate for the Picard iteration sequences {T nx0}n∈N for this type of maps, and show that if the space is complete, then all Picard iteration sequences converge to the unique fixed point of T. Our Cauchy rate depends on the space (X, d), the map T, and the starting point x0 ∈ X only through an upper bound b ≥ d(x0, T x0) and certain moduli θ, µ for the map, but is otherwise fully uniform. As a step on the way to proving our fixed point result we also calculate a modulus of uniqueness for this type of maps.es
dc.description.sponsorshipJunta de Andalucíaes
dc.description.sponsorshipResearch Council of Norwayes
dc.description.sponsorshipDirección General de Enseñanza Superiores
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherCasa Cartii de Stiintaes
dc.relation.ispartofFixed Point Theory, 14 (1), 11-28.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCauchy ratees
dc.subjectWweakly Zamfirescu mapses
dc.subjectWeakly contractive mapses
dc.subjectQuasi-contraction mapses
dc.subjectModulus of uniquenesses
dc.subjectRate of convergencees
dc.subjectFixed pointses
dc.titleRate of convergence under weak contractiveness conditionses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Análisis Matemáticoes
dc.relation.projectIDFQM-3543es
dc.relation.projectID204762/V30es
dc.relation.projectIDMTM2007-60854es
dc.relation.projectIDFQM-210es
dc.relation.projectIDFQM-1504es
dc.relation.projectIDMTM2009-13997-C02-01es
dc.relation.projectIDFQM-127es
dc.contributor.groupUniversidad de Sevilla. FQM127: Análisis Funcional no Lineales
idus.format.extent23 p.es
dc.journaltitleFixed Point Theoryes
dc.publication.volumen14es
dc.publication.issue1es
dc.publication.initialPage11es
dc.publication.endPage28es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/47033

FilesSizeFormatViewDescription
Rate of convergence under weak ...235.7KbIcon   [ PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional