Repositorio de producción científica de la Universidad de Sevilla

Isotropy and marginally trapped surfaces in a spacetime

 

Advanced Search
 
Opened Access Isotropy and marginally trapped surfaces in a spacetime
Cites

Show item statistics
Icon
Export to
Author: Cabrerizo Jaraíz, José Luis
Fernández Andrés, Manuel
Gómez Casanueva, Juan Salvador
Department: Universidad de Sevilla. Departamento de Geometría y Topología
Date: 2010
Published in: Classical and Quantum Gravity, 27 (13), 135005-135017.
Document type: Article
Abstract: In this note we shall study the notions of isotropic and marginally trapped surface in a spacetime by using a differential geometric approach. We first consider spacelike isotropic surfaces in a Lorentzian manifold and, in particular, in a four-dimensional spacetime, where the isotropy function appears to be determined by the mean curvature vector field of the surface. Explicit examples of isotropic marginally outer trapped surfaces are given in the standard fourdimensional space forms: Minkowski, De Sitter and anti De Sitter spaces. Then we prove ridigity theorems for complete spacelike 0-isotropic surfaces without flat points in these standard space forms. As a consequence, we also obtain characterizations of complete spacelike isotropic marginally trapped surfaces in these backgrounds.
Cite: Cabrerizo Jaraíz, J.L., Fernández Andrés, M. y Gómez Casanueva, J.S. (2010). Isotropy and marginally trapped surfaces in a spacetime. Classical and Quantum Gravity, 27 (13), 135005-135017.
Size: 168.6Kb
Format: PDF

URI: http://hdl.handle.net/11441/46924

DOI: 10.1088/0264-9381/27/13/135005

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)