Repositorio de producción científica de la Universidad de Sevilla

Compact composition operators on the Dirichlet space and capacity of sets of contact points

Opened Access Compact composition operators on the Dirichlet space and capacity of sets of contact points

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Lefèvre, Pascal
Li, Daniel
Queffélec, Hervé
Rodríguez Piazza, Luis
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2013-02-15
Publicado en: Journal of Functional Analysis, 264 (4), 895-919.
Tipo de documento: Artículo
Resumen: We prove several results about composition operators on the Dirichlet space D⁎. For every compact set K⊆∂D of logarithmic capacity , there exists a Schur function φ both in the disk algebra A(D) and in D⁎ such that the composition operator Cφ is in all Schatten classes Sp(D⁎), p>0, and for which . For every bounded composition operator Cφ on D⁎ and every ξ∈∂D, the logarithmic capacity of is 0. Every compact composition operator Cφ on D⁎ is compact on BΨ2 and on HΨ2; in particular, Cφ is in every Schatten class Sp, p>0, both on H2 and on B2. There exists a Schur function φ such that Cφ is compact on HΨ2, but which is not even bounded on D⁎. There exists a Schur function φ such that Cφ is compact on D⁎, but in no Schatten class Sp(D⁎).
Cita: Lefèvre, P., Li, D., Queffélec, H. y Rodríguez Piazza, L. (2013). Compact composition operators on the Dirichlet space and capacity of sets of contact points. Journal of Functional Analysis, 264 (4), 895-919.
Tamaño: 302.2Kb
Formato: PDF

URI: http://hdl.handle.net/11441/46350

DOI: 10.1016/j.jfa.2012.12.004

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones