Autor: |
Bernal González, Luis
Bonilla Ramírez, Antonio Lorenzo Calderón Moreno, María del Carmen Prado Bassas, José Antonio |
Departamento: | Universidad de Sevilla. Departamento de Análisis Matemático |
Fecha: | 2007-03 |
Publicado en: | Constructive Approximation, 25 (2), 211-219. |
Tipo de documento: | Artículo |
Resumen: | Let Ω be a domain in the N-dimensional real space, L be an elliptic differential operator, and (Tn) be a sequence whose members belong to a certain class of operators defined on the space of L-analytic functions on Ω. It is proved in this paper the existence of a dense linear manifold of L-analytic functions all of whose nonzero members have maximal cluster sets under the action of every Tn along any curve ending at the boundary of Ω such that its ω-limit does not contain any component of the boundary. The above class contains all partial differentiation operators ∂ α, hence the statement extends earlier results due to Boivin, Gauthier and Paramonov, and to the first, third and fourth authors. |
Cita: | Bernal González, L., Bonilla Ramírez, A.L., Calderón Moreno, M.d.C. y Prado Bassas, J.A. (2007). Maximal cluster sets of L-analytic functions along arbitrary curves. Constructive Approximation, 25 (2), 211-219. |
URI: http://hdl.handle.net/11441/45722
DOI: 10.1007/s00365-006-0636-5
Mostrar el registro completo del ítem