Repositorio de producción científica de la Universidad de Sevilla

Maximal cluster sets of L-analytic functions along arbitrary curves

Opened Access Maximal cluster sets of L-analytic functions along arbitrary curves

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Bernal González, Luis
Bonilla Ramírez, Antonio Lorenzo
Calderón Moreno, María del Carmen
Prado Bassas, José Antonio
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2007-03
Publicado en: Constructive Approximation, 25 (2), 211-219.
Tipo de documento: Artículo
Resumen: Let Ω be a domain in the N-dimensional real space, L be an elliptic differential operator, and (Tn) be a sequence whose members belong to a certain class of operators defined on the space of L-analytic functions on Ω. It is proved in this paper the existence of a dense linear manifold of L-analytic functions all of whose nonzero members have maximal cluster sets under the action of every Tn along any curve ending at the boundary of Ω such that its ω-limit does not contain any component of the boundary. The above class contains all partial differentiation operators ∂ α, hence the statement extends earlier results due to Boivin, Gauthier and Paramonov, and to the first, third and fourth authors.
Cita: Bernal González, L., Bonilla Ramírez, A.L., Calderón Moreno, M.d.C. y Prado Bassas, J.A. (2007). Maximal cluster sets of L-analytic functions along arbitrary curves. Constructive Approximation, 25 (2), 211-219.
Tamaño: 189.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45722

DOI: 10.1007/s00365-006-0636-5

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones