Repositorio de producción científica de la Universidad de Sevilla

Heisenberg uniqueness pairs and the Klein-Gordon equation

Opened Access Heisenberg uniqueness pairs and the Klein-Gordon equation

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Hedenmalm, Håkan
Montes Rodríguez, Alfonso
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2011
Publicado en: Annals of Mathematics, 173, 1507-1527.
Tipo de documento: Artículo
Resumen: A Heisenberg uniqueness pair (HUP) is a pair (Γ, Λ), where Γ is a curve in the plane and Λ is a set in the plane, with the following property: any bounded Borel measure µ in the plane supported on Γ, which is absolutely continuous with respect to arc length, and whose Fourier transform bµ vanishes on Λ, must automatically be the zero measure. We prove that when Γ is the hyperbola x1x2 = 1, and Λ is the lattice-cross Λ = (αZ × {0}) ∪ ({0} × βZ), where α, β are positive reals, then (Γ, Λ) is an HUP if and only if αβ ≤ 1; in this situation, the Fourier transform bµ of the measure solves the one-dimensional Klein-Gordon equation. Phrased differently, we show that e πiαnt , e πiβn/t , n ∈ Z, span a weak-star dense subspace in L ∞(R) if and only if αβ ≤ 1. In order to prove this theorem, some elements of linear fractional theory and ergodic theory are needed, such as the Birkhoff Ergodic Theorem. An idea parallel to the one exploited by Makarov and Poltoratski (in the context of model sub...
[Ver más]
Cita: Hedenmalm, H. y Montes Rodríguez, A. (2011). Heisenberg uniqueness pairs and the Klein-Gordon equation. Annals of Mathematics, 173, 1507-1527.
Tamaño: 173.7Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45349

DOI: 10.4007/annals.2011.173.3.6

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones