Opened Access On characterizations of classical polynomials

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Álvarez Nodarse, Renato
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2006-11-01
Publicado en: Journal of Computational and Applied Mathematics, 196 (1), 320-337.
Tipo de documento: Artículo
Resumen: It is well known that the classical families of Jacobi, Laguerre, Hermite, and Bessel polynomials are characterized as eigenvectors of a second order linear differential operator with polynomial coefficients, Rodrigues formula, etc. In this paper we present an unified study of the classical discrete polynomials and q-polynomials of the q-Hahn tableau by using the difference calculus on linear-type lattices. We obtain in a straightforward way several characterization theorems for the classical discrete and q-polynomials of the q-Hahn tableau. Finally, a detailed discussion of the Marcelln et. al. characterization is presented.
Cita: Álvarez Nodarse, R. (2006). On characterizations of classical polynomials. Journal of Computational and Applied Mathematics, 196 (1), 320-337.
Tamaño: 212.5Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45234

DOI: 10.1016/j.cam.2005.06.046

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones